Comparing Anterior Cruciate Ligament Injury Risk Variables Between Unanticipated Cutting and Decelerating Tasks

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

To examine the relationship between anterior cruciate ligament injury risk factors in unanticipated cutting and decelerating. Three-dimensional kinematics and ground reaction forces were collected on 11 females (22 [2] y, 1.67 [0.08] m, and 68.5 [9.8] kg) during 2 unanticipated tasks. Paired samples t tests were performed to compare dependent variables between tasks. Spearman rank correlation coefficients were calculated to analyze the relationship between peak internal knee adduction moment and peak anterior tibial shear force (ASF) during 2 unanticipated tasks. Significantly greater knee abduction angles, peak knee adduction moments, and peak ASFs were observed during cutting (P ≤ .05). A strong positive correlation existed between decelerating ASF and cutting ASF (ρ = .67), while correlations between decelerating knee adduction moment and cutting knee adduction moment and decelerating ASF and cutting knee adduction moment were not significant. In situations where time management is a necessity and only one task can be evaluated, it may be more appropriate to utilize an unanticipated cutting task rather than an unanticipated deceleration task because of the increased knee adduction moment and ASF. These data can help future clinicians in better designing more effective anterior cruciate ligament injury risk screening methods.

Peel, Schroeder, and Weinhandl are with the Department of Kinesiology, Recreation, and Sport Studies, The University of Tennessee, Knoxville, TN, USA. Sievert is with the Department of Human Movement Sciences, Old Dominion University, Norfolk, VA, USA.

Weinhandl (jweinhan@utk.edu) is corresponding author.
Journal of Applied Biomechanics
Article Sections
References
  • 1.

    Olsen OEMyklebust GEngebretsen LBahr R. Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med. 2004;32(4):10021012. PubMed ID: 15150050 doi:10.1177/0363546503261724

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Boden BPDean GSFeagin JA JrGarrett WE Jr. Mechanisms of anterior cruciate ligament injury. Orthopedics. 2000;23(6):573578. PubMed ID: 10875418

  • 3.

    McLean SGHuang Xvan den Bogert AJ. Association between lower extremity posture at contact and peak knee valgus moment during sidestepping: implications for ACL injury. Clin Biomech. 2005;20(8):863870. doi:10.1016/j.clinbiomech.2005.05.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Taylor JBFord KRNguyen ADShultz SJ. Biomechanical comparison of single- and double-leg jump landings in the sagittal and frontal plane. Orthop J Sports Med. 2016;4(6):2325967116655158. PubMed ID: 27482527 doi:10.1177/2325967116655158

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Hewett TEMyer GDFord KRet al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492501. PubMed ID: 15722287 doi:10.1177/0363546504269591

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Griffin LYAlbohm MJArendt EAet al. Understanding and preventing noncontact anterior cruciate ligament injuries: a review of the Hunt Valley II meeting, January 2005. Am J Sports Med. 2006;34(9):15121532. PubMed ID: 16905673 doi:10.1177/0363546506286866

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Markolf KLBurchfield DMShapiro MMShepard MFFinerman GASlauterbeck JL. Combined knee loading states that generate high anterior cruciate ligament forces. J Orthop Res. 1995;13(6):930935. PubMed ID: 8544031 doi:10.1002/jor.1100130618

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Waldén MHägglund MWerner JEkstrand J. The epidemiology of anterior cruciate ligament injury in football (soccer): a review of the literature from a gender-related perspective. Knee Surg Sports Traumatol Arthrosc. 2011;19(1):310. PubMed ID: 20532868 doi:10.1007/s00167-010-1172-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Sigward SMCesar GMHavens KL. Predictors of frontal plane knee moments during side-step cutting to 45 and 110 degrees in men and women: implications for anterior cruciate ligament injury. Clin J Sport Med. 2015;25(6):529534. PubMed ID: 25290102

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Agel JArendt EABershadsky B. Anterior cruciate ligament injury in national collegiate athletic association basketball and soccer: a 13-year review. Am J Sports Med. 2005;33(4):524531. PubMed ID: 15722283 doi:10.1177/0363546504269937

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Malinzak RAColby SMKirkendall DTYu BGarrett WE. A comparison of knee joint motion patterns between men and women in selected athletic tasks. Clin Biomech. 2001;16(5):438445. doi:10.1016/S0268-0033(01)00019-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    McLean SGLipfert SWvan den Bogert AJ. Effect of gender and defensive opponent on the biomechanics of sidestep cutting. Med Sci Sports Exerc. 2004;36(6):10081016. PubMed ID: 15179171 doi:10.1249/01.MSS.0000128180.51443.83

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Chappell JDYu BKirkendall DTGarrett WE. A comparison of knee kinetics between male and female recreational athletes in stop-jump tasks. Am J Sports Med. 2002;30(2):261267. PubMed ID: 11912098 doi:10.1177/03635465020300021901

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Fox ASBonacci JMcLean SGSaunders N. Efficacy of ACL injury risk screening methods in identifying high-risk landing patterns during a sport-specific task. Scand J Med Sci Sports. 2017;27(5):525534. PubMed ID: 27292768 doi:10.1111/sms.12715

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Thompson JATran AAGatewood CTet al. Biomechanical effects of an injury prevention program in preadolescent female soccer athletes. Am J Sports Med. 2017;45(2):294301. PubMed ID: 27793803 doi:10.1177/0363546516669326

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Kim JHLee KKKong SJAn KOJeong JHLee YS. Effect of anticipation on lower extremity biomechanics during side- and cross-cutting maneuvers in young soccer players. Am J Sports Med. 2014;42(8):19851992. PubMed ID: 24787044 doi:10.1177/0363546514531578

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Besier TFLloyd DGAckland TRCochrane JL. Anticipatory effects on knee joint loading during running and cutting maneuvers. Med Sci Sports Exerc. 2001;33(7):11761181. PubMed ID: 11445765 doi:10.1097/00005768-200107000-00015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Sell TCAkins JSOpp ARLephart SM. Relationship between tibial acceleration and proximal anterior tibia shear force across increasing jump distance. J Appl Biomech. 2014;30(1):7581. PubMed ID: 23878269 doi:10.1123/jab.2012-0186

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Sigward SPowers CM. The influence of experience on knee mechanics during side-step cutting in females. Clin Biomech. 2006;21(7):740747. doi:10.1016/j.clinbiomech.2006.03.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Yu BLin CFGarrett WE. Lower extremity biomechanics during the landing of a stop-jump task. Clin Biomech. 2006;21(3):297305. doi:10.1016/j.clinbiomech.2005.11.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Weinhandl JTEarl-Boehm JEEbersole KTHuddleston WEArmstrong BSO’Connor KM. Anticipatory effects on anterior cruciate ligament loading during sidestep cutting. Clin Biomech. 2013;28(6):655663. doi:10.1016/j.clinbiomech.2013.06001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Brown TNPalmieri-Smith RMMcLean SG. Sex and limb differences in hip and knee kinematics and kinetics during anticipated and unanticipated jump landings: implications for anterior cruciate ligament injury. Br J Sports Med. 2009;43(13):10491056. PubMed ID: 19372596 doi:10.1136/bjsm.2008.055954

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    McLean SGBorotikar BLucey SM. Lower limb muscle pre-motor time measures during a choice reaction task associate with knee abduction loads during dynamic single leg landings. Clin Biomech. 2010;25(6):563569. doi:10.1016/j.clinbiomech.2010.02.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Mornieux GGehring DFurst PGollhofer A. Anticipatory postural adjustments during cutting manoeuvres in football and their consequences for knee injury risk. J Sports Sci. 2014;32(13):12551262. PubMed ID: 24742137 doi:10.1080/02640414.2013.876508

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Kristianslund EKrosshaug Tvan den Bogert AJ. Effect of low pass filtering on joint moments from inverse dynamics: implications for injury prevention. J Biomech. 2012;45(4):666671. PubMed ID: 22227316 doi:10.1016/j.jbiomech.2011.12.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Spoor CWVeldpaus FE. Rigid body motion calculated from spatial co-ordinates of markers. J Biomech. 1980;13(4):391393. PubMed ID: 7400168 doi:10.1016/0021-9290(80)90020-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Grood ESSuntay WJ. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng. 1983;105(2):136144. PubMed ID: 6865355 doi:10.1115/1.3138397

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Weinhandl JTO’Connor KM. Assessment of a greater trochanter-based method of locating the hip joint center. J Biomech. 2010;43(13):26332636. PubMed ID: 20605153 doi:10.1016/j.jbiomech.2010.05.023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Wu GSiegler SAllard Pet al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. International Society of Biomechanics. J Biomech. 2002;35(4):543548. PubMed ID: 11934426 doi:10.1016/S0021-9290(01)00222-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Bresler BFrankel JP. The forces and moments in the leg during level walking. Trans Am Soc Mech Eng. 1950;72:2736.

  • 31.

    Dempster WTGabel WCFelts WJ. The anthropometry of the manual work space for the seated subject. Am J Phys Anthropol. 1959;17:289317. PubMed ID: 13815872 doi:10.1002/ajpa.1330170405

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Hopkins WGMarshall SWBatterham AMHanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Prion SHaerling KA. Making sense of methods and measurement: Spearman-rho ranked-order correlation coefficient. Clin Simul Nurs. 2014;10(10):535536. doi:10.1016/j.ecns.2014.07.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Koga HNakamae AShima Yet al. Mechanisms for noncontact anterior cruciate ligament injuries: knee joint kinematics in 10 injury situations from female team handball and basketball. Am J Sports Med. 2010;38(11):22182225. PubMed ID: 20595545 doi:10.1177/0363546510373570

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Krosshaug TNakamae ABoden BPet al. Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med. 2007;35(3):359367. PubMed ID: 17092928 doi:10.1177/0363546506293899

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    McLean SGSu Avan den Bogert AJ. Development and validation of a 3-D model to predict knee joint loading during dynamic movement. J Biomech Eng. 2003;125(6):864874. PubMed ID: 14986412 doi:10.1115/1.1634282

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Hanson AMPadua DATroy Blackburn JPrentice WEHirth CJ. Muscle activation during side-step cutting maneuvers in male and female soccer athletes. J Athl Train. 2008;43(2):133143. PubMed ID: 18345337 doi:10.4085/1062-6050-43.2.133

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 88 88 29
Full Text Views 24 24 14
PDF Downloads 4 4 3
Altmetric Badge
PubMed
Google Scholar
Cited By