Influence of Sacroiliac Bracing on Muscle Activation Strategies During 2 Functional Tasks in Standing-Tolerant and Standing-Intolerant Individuals

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

People who develop low back pain during standing (standing-intolerant) are a subclinical group at risk for clinical low back pain. Standing-intolerant individuals respond favorably to stabilization exercise and may be similar to people with sacroiliac joint dysfunction that respond to stabilization approaches including sacroiliac joint (SIJ) bracing. The purpose was to characterize muscle activation and response to SIJ bracing in standing-tolerant and standing-intolerant individuals during forward flexion and unilateral stance. Trunk and hip electromyography data were collected from 31 participants (17 standing-tolerant and 14 standing-intolerant) while performing these tasks with and without SIJ bracing. Kinematics were captured concurrently and used for movement phase identification. Cross-correlation quantified trunk coactivation and extensor timing during return-to-stand from forward flexion; root mean square amplitude quantified gluteal activity during unilateral stance. The standing-intolerant group had elevated erector spinae–external oblique coactivation without bracing, and erector spinae–internal oblique coactivation with bracing during return-to-stand compared with standing-tolerant individuals. Both groups reversed extensor sequencing during return-to-stand with bracing. Standing-tolerant individuals had higher hip abductor activity in nondominant unilateral stance and increased hip extensor activity with bracing. SIJ bracing could be a useful adjunct to other interventions targeted toward facilitating appropriate muscle activation in standing-intolerant individuals.

The authors are with the School of Physical Therapy, Regis University, Denver, CO, USA.

Nelson-Wong (enelsonw@regis.edu) is corresponding author.
Journal of Applied Biomechanics
Article Sections
References
  • 1.

    Macfarlane GJThomas EPapageorgiou ACCroft PRJayson MISilman AJ. Employment and physical work activities as predictors of future low back pain. Spine. 1997;22:11431149. PubMed ID: 9160474 doi:10.1097/00007632-199705150-00015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Andersen JHHaahr JPFrost P. Risk factors for more severe regional musculoskeletal symptoms. Arthritis Rheum. 2007;56(4):13551364. PubMed ID: 17393441 doi:10.1002/art.22513

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Kim JYStuart-Buttle CMarras WS. The effects of mats on back and leg fatigue. Appl Ergon. 1994;25(1):2934. PubMed ID: 15676945 doi:10.1016/0003-6870(94)90028-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Gregory DECallaghan JP. Prolonged standing as a precursor for the development of low back discomfort: an investigation of possible mechanisms. Gait Posture. 2008;28:8692. PubMed ID: 18053722 doi:10.1016/j.gaitpost.2007.10.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Nelson-Wong ECallaghan JP. Is muscle co-activation a predisposing factor for low back pain development during standing? A multifactorial approach for early identification of at-risk individuals. J Electromyogr Kinesiol. 2010;20:256263. PubMed ID: 19467607 doi:10.1016/j.jelekin.2009.04.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Marshall PWPatel HCallaghan JP. Gluteus medius strength, endurance, and co-activation in the development of low back pain during prolonged standing. Hum Mov Sci. 2011;30(1):6373. PubMed ID: 21227522 doi:10.1016/j.humov.2010.08.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Gallagher KNelson-Wong ECallaghan JP. Do individuals who develop transient low back pain exhibit different postural changes than non-pain developers during prolonged standing? Gait Posture. 2011;34(4):490495. PubMed ID: 21802955 doi:10.1016/j.gaitpost.2011.06.025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Nelson-Wong EGregory DEWinter DACallaghan JP. Gluteus medius muscle activation patterns as a predictor of low back pain during standing. Clin Biomech. 2008;23:545553. doi:10.1016/j.clinbiomech.2008.01.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Nelson-Wong EHowarth SJCallaghan JP. Acute biomechanical responses to a prolonged standing exposure in a simulated occupational setting. Ergonomics. 2010;53(9):11171128. PubMed ID: 20737337 doi:10.1080/00140139.2010.500400

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Nelson-Wong ECallaghan JP. Transient low back pain development during standing predicts future clinical low back pain in previously asymptomatic individuals. Spine. 2014;39(6):379383. doi:10.1097/BRS.0000000000000191

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Nelson-Wong EFlynn TWCallaghan JP. Development of active hip abduction as a screening test for identifying occupational low back pain. J Orthop Sports Phys Ther. 2009;39(9):649657. PubMed ID: 19721214 doi:10.2519/jospt.2009.3093

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Nelson-Wong EAlex BCsepe DLancaster DCallaghan JP. Altered muscle recruitment during extension from trunk flexion in low back pain developers. Clin Biomech. 2012;27(10):994998. doi:10.1016/j.clinbiomech.2012.07.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Bullock-Saxton JJanda VBullock M. Reflex activation of gluteal muscles in walking. An approach to restoration of muscle function for patients with low-back pain. Spine. 1993;18(6):704708. PubMed ID: 8516698 doi:10.1097/00007632-199305000-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Wong TKLee RY. Effects of low back pain on the relationship between the movements of the lumbar spine and hip. Hum Mov Sci. 2004;23:2134. PubMed ID: 15201039 doi:10.1016/j.humov.2004.03.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Leinonen VKankaanpää MAiraksinen OHänninen O. Back and hip extensor activities during flexion/extension: effects of low back pain and rehabilitation. Arch Phys Med Rehabil. 2000;81:3237. PubMed ID: 10638873 doi:10.1016/S0003-9993(00)90218-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Nelson-Wong ECallaghan JP. Changes in muscle activation patterns and subjective low back pain ratings during prolonged standing in response to an exercise intervention. J Electromyogr Kinesiol. 2010;20(6):11251133. PubMed ID: 20674390 doi:10.1016/j.jelekin.2010.07.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Hicks GEFritz JMDelitto AMcGill SM. Preliminary development of a clinical prediction rule for determining which patients with low back pain will respond to a stabilization exercise program. Arch Phys Med Rehabil. 2005;86(9):17531762. PubMed ID: 16181938 doi:10.1016/j.apmr.2005.03.033

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Simopoulos TTManchikanti LSingh Vet al. A systematic evaluation of prevalence and diagnostic accuracy of sacroiliac joint dysfunctions. Pain Physician. 2012;15:E305E344. PubMed ID: 22622915

    • Search Google Scholar
    • Export Citation
  • 19.

    Vleeming ASchuenke MMasi ACarreiro JDanneels LWillard F. The sacroiliac joint: an overview of its anatomy, function and potential clinical implications. J Anat. 2012;221:537567. PubMed ID: 22994881 doi:10.1111/j.1469-7580.2012.01564.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Telli HTelli STopal M. The validity and reliability of provocation tests in the diagnosis of sacroiliac joint dysfunction. Pain Physician. 2018;21:E367E376. PubMed ID: 30045603

    • Search Google Scholar
    • Export Citation
  • 21.

    Hungerford BGilleard WHodges P. Evidence of altered lumbopelvic muscle recruitment in the presence of sacroiliac joint pain. Spine. 2003;28(14):15931600. PubMed ID: 12865851

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Panjabi MM. The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. J Spinal Disord. 1992;5(4):390397. PubMed ID: 1490035 doi:10.1097/00002517-199212000-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Panjabi MM. The stabilizing system of the spine. Part I. function, dysfunction, adaptation and enhancement. J Spinal Disord. 1992;5(4):383389. PubMed ID: 1490034 doi:10.1097/00002517-199212000-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Panjabi MM. Clinical spinal instability and low back pain. J Electromyogr Kinesiol. 2003;13(4):371379. PubMed ID: 12832167 doi:10.1016/S1050-6411(03)00044-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Hu HMeijer OGvan Dieën JHet al. Muscle activity during the active straight leg raise (ASLR), and the effects of a pelvic belt on the ASLR and on treadmill walking. J Biomech. 2010;43(3):532539. PubMed ID: 19883914 doi:10.1016/j.jbiomech.2009.09.035

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Park KKim SOh D. Effects of the pelvic compression belt on gluteus medius, quadratus lumborum, and lumbar multifidus activities during side-lying hip abduction. J Electromyogr Kinesiol. 2010;20(6):11411145. PubMed ID: 20646935 doi:10.1016/j.jelekin.2010.05.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Shadmehr AJafarian ZTalebian S. Changes in recruitment of pelvic stabilizer muscles in people with and without sacroiliac joint pain during the active straight-leg-raise test. J Back Musculoskelet Rehabil. 2012;25(1):2732. PubMed ID: 22398264 doi:10.3233/BMR-2012-0307

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Hammer NMöbius RSchleifenbaum Set al. Pelvic belt effects on health outcomes and functional parameters of patients with sacroiliac joint pain. PLoS One. 2015;10(8):e0136375. PubMed ID: 26305790 doi:10.1371/journal.pone.0136375

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Jung H-SJeon H-SOh D-WKwon O-Y. Effect of the pelvic compression belt on the hip extensor activation patterns of sacroiliac joint pain patients during one-leg standing: a pilot study. Man Ther. 2013;18:143148. PubMed ID: 23111368 doi:10.1016/j.math.2012.09.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Hagg OFritzell PNordwall A; Swedish Lumbar Spine Study Group. The clinical importance of changes in outcome scores after treatment for low back pain. Eur Spine J. 2003;12:1220. PubMed ID: 12592542

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Dankaerts WO’Sullivan PBBurnett AFStraker LMDanneels LA. Reliability of EMG measurements for trunk muscles during maximal and sub-maximal voluntary isometric contractions in healthy controls and CLBP patients. J Electromyogr Kinesiol. 2004;14(3):333342. PubMed ID: 15094147 doi:10.1016/j.jelekin.2003.07.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Drake JDCallaghan JP. Elimination of electrocardiogram contamination from electromyogram signals: an evaluation of currently used removal techniques. J Electromyogr Kinesiol. 2006;16(2):175187. PubMed ID: 16139521 doi:10.1016/j.jelekin.2005.07.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Mello RGOliveira LFNadal J. Digital Butterworth filter for subtracting noise from low magnitude surface electromyogram. Comput Methods Programs Biomed. 2007;87:2835. PubMed ID: 17548125 doi:10.1016/j.cmpb.2007.04.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Winter DA. Biomechanics and Motor Control of Human Movement. 4th ed. Hoboken, NJ: John Wiley & Sons; 2009.

  • 35.

    Nelson-Wong EHowarth SJWinter DACallaghan JP. Application of auto and cross-correlation analysis in human movement and rehabilitation research. J Orthop Sports Phys Ther. 2009;39(4):287295. PubMed ID: 19346626 doi:10.2519/jospt.2009.2969

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Shum GLCrosbie JLee RY. Effect of low back pain on the kinematics and joint coordination of the lumbar spine and hip during sit-to-stand and stand-to-sit. Spine. 2005;30(17):19982004. PubMed ID: 16135992 doi:10.1097/01.brs.0000176195.16128.27

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Osu RFranklin DWKato Het al. Short- and long-term changes in joint co-contraction associated with motor learning as revealed from surface EMG. J Neurophysiol. 2002;88:9911004. PubMed ID: 12163548 doi:10.1152/jn.2002.88.2.991

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Mogk JPMKeir PJ. Crosstalk in surface electromyography of the proximal forearm during gripping tasks. J Electromyogr Kinesiol. 2003;13:6371. PubMed ID: 12488088 doi:10.1016/S1050-6411(02)00071-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Shum GCrosbie JLee R. Symptomatic and asymptomatic movement coordination of the lumbar spine and hip during an everyday activity. Spine. 2005;30:E697E702. PubMed ID: 16319739 doi:10.1097/01.brs.0000188255.10759.7a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    McDonnell MNRidding MCFlavel SCMiles TS. Effect of human grip strategy on force control in precision tasks. Exp Brain Res. 2005;161:368373. PubMed ID: 15480594 doi:10.1007/s00221-004-2081-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Sorensen CJJohnson MBCallaghan JPGeorge SZVan Dillen LR. Validity of a paradigm for low back pain symptom development during prolonged standing. Clin J Pain. 2015;31(7):652659. PubMed ID: 25171636 doi:10.1097/AJP.0000000000000148

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Gallagher KCallaghan JP. Early static standing is associated with prolonged standing-induced low back pain. Hum Mov Sci. 2015;44:111121. PubMed ID: 26340276 doi:10.1016/j.humov.2015.08.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    van Dieën JHSelen LPCholewicki J. Trunk muscle activation in low-back pain patients, an analysis of the literature. J Electromyogr Kinesiol. 2003;13:333351. PubMed ID: 12832164 doi:10.1016/S1050-6411(03)00041-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Nadler SFMalanga GABartoli LAFeinberg JHPrybicien MDePrince M. Hip muscle imbalance and low back pain in athletes: influence of core strengthening. Med Sci Sports Exerc. 2002;34(1):916. doi:10.1097/00005768-200201000-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Viggiani DCallaghan JP. A hip abduction exercise prior to prolonged standing increased movement while reducing cocontraction and low back pain perception in those initially reporting low back pain. J Electromyogr Kinesiol. 2016;31:6371. PubMed ID: 27693989 doi:10.1016/j.jelekin.2016.09.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Nelson-Wong EBrendan ACsepe DLancaster DCallaghan JP. Recruitment of musculature during extension from full trunk flexion is altered in people who develop low back pain during prolonged standing. Paper presented at: Annual Meeting of the American Society of Biomechanics; 2011. Long Beach, CA.

    • Export Citation
  • 47.

    McGorry RWHsiang SMFathallah FAClancy EA. Timing of activation of the erector spinae and hamstrings during a trunk flexion and extension task. Spine. 2001;26(4):418425. PubMed ID: 11224890 doi:10.1097/00007632-200102150-00019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Willard FVleeming ASchuenke MDanneels LSchleip R. The thoracolumbar fascia: anatomy, function and clinical considerations. J Anat. 2012;221:507536. PubMed ID: 22630613 doi:10.1111/j.1469-7580.2012.01511.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 123 123 27
Full Text Views 17 17 8
PDF Downloads 9 9 2
Altmetric Badge
PubMed
Google Scholar