Kinematic Correlates of Kinetic Outcomes Associated With Running-Related Injury

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

High magnitudes and rates of loading have been implicated in the etiology of running-related injuries. Knowledge of kinematic variables that are predictive of kinetic outcomes could inform clinic-based gait retraining programs. Healthy novice female runners ran on a treadmill while 3-dimensional biomechanical data were collected. Kinetic outcomes consisted of vertical impact transient, average vertical loading rate, instantaneous vertical loading rate, and peak braking force. Kinematic outcomes included step length), hip flexion angle at initial contact, horizontal distance from heel to center of mass at initial contact, shank angle at initial contact, and foot strike angle. Stepwise multiple linear regression was used to evaluate the amount of variance in kinetic outcomes explained by kinematic outcomes. A moderate amount of variance in kinetic outcomes (vertical impact transient = 46%, average vertical loading rate = 37%, instantaneous vertical loading rate = 49%, peak braking force = 54%) was explained by several discrete kinematic variables—predominantly speed, horizontal distance from heel to center of mass, foot strike angle, and step length. Hip flexion angle and shank angle did not contribute to any models. Decreasing step length and transitioning from a rearfoot strike may reduce kinetic risk factors for running-related injuries. In contrast, clinical strategies such as modifying shank angle and hip flexion angle would not appear to contribute significantly to the variance of kinetic outcomes after accounting for other variables.

Napier, MacLean, and Hunt are with the Department of Physical Therapy, The University of British Columbia, Vancouver, Canada. MacLean, Maurer, and Taunton are with Fortius Lab, Fortius Institute, Burnaby, Canada. Taunton is also with the Division of Sports Medicine, Department of Family Practice, The University of British Columbia, Vancouver, Canada.

Napier (chris.napier@ubc.ca) is corresponding author.
  • 1.

    Lavie CJ, Lee DC, Sui X, et al. Effects of running on chronic diseases and cardiovascular and all-cause mortality. Mayo Clin Proc. 2015;90(11):1541–1552. PubMed ID: 26362561 doi:10.1016/j.mayocp.2015.08.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Bovens AM, Janssen GM, Vermeer HG, et al. Occurrence of running injuries in adults following a supervised training program. Int J Sports Med. 1989;10(3):186–190. PubMed ID: 2599739 doi:10.1055/s-2007-1024970

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Buist I, Bredeweg SW, Bessem B, van Mechelen W, Lemmink KA, Diercks RL. Incidence and risk factors of running-related injuries during preparation for a 4-mile recreational running event. Br J Sports Med. 2010;44(8):598–604. PubMed ID: 18487252 doi:10.1136/bjsm.2007.044677

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Taunton JE, Ryan MB, Clement DB, McKenzie DC, Lloyd-Smith DR, Zumbo BD. A retrospective case-control analysis of 2002 running injuries. Br J Sports Med. 2002;36(2):95–101. PubMed ID: 11916889 doi:10.1136/bjsm.36.2.95

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Hreljac A. Impact and overuse injuries in runners. Med Sci Sports Exerc. 2004;36(5):845–849. PubMed ID: 15126720 doi:10.1249/01.MSS.0000126803.66636.DD

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Zadpoor AA, Nikooyan AA. The relationship between lower-extremity stress fractures and the ground reaction force: a systematic review. Clin Biomech. 2011;26(1):23–28. PubMed ID: 20846765 doi:10.1016/j.clinbiomech.2010.08.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Milner CE, Ferber R, Pollard CD, Hamill J, Davis IS. Biomechanical factors associated with tibial stress fracture in female runners. Med Sci Sports Exerc. 2006;38(2):323–328. PubMed ID: 16531902 doi:10.1249/01.mss.0000183477.75808.92

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Pohl MB, Hamill J, Davis IS. Biomechanical and anatomic factors associated with a history of plantar fasciitis in female runners. Clin J Sport Med. 2009;19(5):372–376. PubMed ID: 19741308 doi:10.1097/JSM.0b013e3181b8c270

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Bredeweg SW, Kluitenberg B, Bessem B, Buist I. Differences in kinetic variables between injured and noninjured novice runners: a prospective cohort study. J Sci Med Sport. 2013;16(3):205–210. PubMed ID: 22921763 doi:10.1016/j.jsams.2012.08.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Davis IS, Bowser BJ, Mullineaux DR. Greater vertical impact loading in female runners with medically diagnosed injuries: a prospective investigation. Br J Sports Med. 2016;50(14):887–892. PubMed ID: 26644428 doi:10.1136/bjsports-2015-094579

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    van der Worp H, Vrielink JW, Bredeweg SW. Do runners who suffer injuries have higher vertical ground reaction forces than those who remain injury-free? A systematic review and meta-analysis. Br J Sports Med. 2016;50(8):450–457. PubMed ID: 26729857 doi:10.1136/bjsports-2015-094924

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Hreljac A, Marshall RN, Hume PA. Evaluation of lower extremity overuse injury potential in runners. Med Sci Sports Exerc. 2000;32(9):1635–1641. PubMed ID: 10994917 doi:10.1097/00005768-200009000-00018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Napier C, MacLean CL, Maurer J, Taunton JE, Hunt MA. Kinetic risk factors of running-related injuries in female recreational runners. Scand J Med Sci Sports. 2018;28(10):2164–2172. PubMed ID: 29846979 doi:10.1111/sms.13228

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Barton CJ, Bonanno DR, Carr J, et al. Running retraining to treat lower limb injuries: a mixed-methods study of current evidence synthesised with expert opinion. Br J Sports Med. 2016;50(9):513–526. PubMed ID: 26884223 doi:10.1136/bjsports-2015-095278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Chan ZYS, Zhang JH, Au IPH, et al. Gait retraining for the reduction of injury occurrence in novice distance runners: 1-year follow-up of a randomized controlled trial. Am J Sports Med. 2018;46(2):388–395. PubMed ID: 29065279 doi:10.1177/0363546517736277

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Crowell HP, Davis IS. Gait retraining to reduce lower extremity loading in runners. Clin Biomech. 2011;26(1):78–83. PubMed ID: 20888675 doi:10.1016/j.clinbiomech.2010.09.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Clansey AC, Hanlon M, Wallace ES, Nevill A, Lake MJ. Influence of tibial shock feedback training on impact loading and running economy. Med Sci Sports Exerc. 2014;46(5):973–981. PubMed ID: 24121245 doi:10.1249/MSS.0000000000000182

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Napier C, Cochrane CK, Taunton JE, Hunt MA. Gait modifications to change lower extremity gait biomechanics in runners: a systematic review. Br J Sports Med. 2015;49(21):1382–1388. PubMed ID: 26105016 doi:10.1136/bjsports-2014-094393

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Dingenen B, Staes FF, Santermans L, et al. Are two-dimensional measured frontal plane angles related to three-dimensional measured kinematic profiles during running? Phys Ther Sport. 2018;29:84–92. PubMed ID: 28642097 doi:10.1016/j.ptsp.2017.02.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Esculier JF, Silvini T, Bouyer LJ, Roy JS. Video-based assessment of foot strike pattern and step rate is valid and reliable in runners with patellofemoral pain. Phys Ther Sport. 2018;29:108–112. PubMed ID: 28666810 doi:10.1016/j.ptsp.2016.11.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Heiderscheit BC, Chumanov ES, Michalski MP, Wille CM, Ryan MB. Effects of step rate manipulation on joint mechanics during running. Med Sci Sports Exerc. 2011;43(2):296–302. PubMed ID: 20581720 doi:10.1249/MSS.0b013e3181ebedf4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Lieberman DE, Warrener AG, Wang J, Castillo ER. Effects of stride frequency and foot position at landing on braking force, hip torque, impact peak force and the metabolic cost of running in humans. J Exp Biol. 2015;218(21):3406–3414. PubMed ID: 26538175 doi:10.1242/jeb.125500

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Wille CM, Lenhart RL, Wang S, Thelen DG, Heiderscheit BC. Ability of sagittal kinematic variables to estimate ground reaction forces and joint kinetics in running. J Orthop Sports Phys Ther. 2014;44(10):825–830. PubMed ID: 25156183 doi:10.2519/jospt.2014.5367

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Mercer JA, Devita P, Derrick TR, Bates BT. Individual effects of stride length and frequency on shock attenuation during running. Med Sci Sports Exerc. 2003;35(2):307–313. PubMed ID: 12569221 doi:10.1249/01.MSS.0000048837.81430.E7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Harrison K, Thakkar B, Kwon Y, Crosswell G, Morgan J, Williams DSB 3rd. Kinematic predictors of loading during running differ by demographic group. Phys Ther Sport. 2018;32:221–226. PubMed ID: 29852457 doi:10.1016/j.ptsp.2018.05.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Altman AR, Davis IS. Impact loading can be reduced with a midfoot strike pattern. Med Sci Sports Exerc. 2010;42(5):676–677. doi:10.1249/01.MSS.0000385887.68407.fc

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Boyer ER, Rooney BD, Derrick TR. Rearfoot and midfoot or forefoot impacts in habitually shod runners. Med Sci Sports Exerc. 2014;46(7):1384–1391. PubMed ID: 24300124 doi:10.1249/MSS.0000000000000234

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Cheung RT, Davis IS. Landing pattern modification to improve patellofemoral pain in runners: a case series. J Orthop Sports Phys Ther. 2011;41(12):914–919. PubMed ID: 22031595 doi:10.2519/jospt.2011.3771

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    MacLean CL, Davis IS, Hamill J. Influence of running shoe midsole composition and custom foot orthotic intervention on lower extremity dynamics during running. J Appl Biomech. 2009;25(1):54–63. PubMed ID: 19299830 doi:10.1123/jab.25.1.54

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Bell AL, Pederson DR, Brand RA. Prediction of hip joint center location from external landmarks. Hum Mov Sci. 1989;8:3–16. doi:10.1016/0167-9457(89)90020-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Borg G. Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med. 1970;2(2):92–98. PubMed ID: 5523831

  • 32.

    Robertson DG, Dowling JJ. Design and responses of Butterworth and critically damped digital filters. J Electromyogr Kinesiol. 2003;13(6):569–573. PubMed ID: 14573371 doi:10.1016/S1050-6411(03)00080-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Samaan CD, Rainbow MJ, Davis IS. Reduction in ground reaction force variables with instructed barefoot running. J Sport Health Sci. 2014;3(2):143–151. doi:10.1016/j.jshs.2014.03.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Riley PO, Dicharry J, Franz J, Della Croce U, Wilder RP, Kerrigan DC. A kinematics and kinetic comparison of overground and treadmill running. Med Sci Sports Exerc. 2008;40(6):1093–1100. PubMed ID: 18460996 doi:10.1249/MSS.0b013e3181677530

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Portney LG, Watkins MP. Foundations of Clinical Research: Applications to Practice. 3rd ed. Toronto, Canada: Pearson Education Inc.; 2009.

    • Search Google Scholar
    • Export Citation
  • 36.

    Schmitz A, Pohl MB, Woods K, Noehren B. Variables during swing associated with decreased impact peak and loading rate in running. J Biomech. 2014;47(1):32–38. PubMed ID: 24200340 doi:10.1016/j.jbiomech.2013.10.026

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Willy RW, Meardon SA, Schmidt A, Blaylock NR, Hadding SA, Willson JD. Changes in tibiofemoral contact forces during running in response to in-field gait retraining. J Sports Sci. 2016;34(17):1602–1611. PubMed ID: 26679058 doi:10.1080/02640414.2015.1125517

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Kuhman DJ, Paquette MR, Peel SA, Melcher DA. Comparison of ankle kinematics and ground reaction forces between prospectively injured and uninjured collegiate cross country runners. Hum Mov Sci. 2016;47:9–15. PubMed ID: 26827155 doi:10.1016/j.humov.2016.01.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Williams DS, McClay IS, Manal KT. Lower extremity mechanics in runners with a converted foot strike pattern. J Appl Biomech. 2000;16(2):210–218. doi:10.1123/jab.16.2.210

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Kluitenberg B, Bredeweg SW, Zijlstra S, Zijlstra W, Buist I. Comparison of vertical ground reaction forces during overground and treadmill running. A validation study. BMC Musculoskelet Disord. 2012;13:235. PubMed ID: 23186326 doi:10.1186/1471-2474-13-235

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Kram R, Griffin TM, Donelan JM, Chang YH. Force treadmill for measuring vertical and horizontal ground reaction forces. J Appl Physiol. 1998;85(2):764–769. PubMed ID: 9688758 doi:10.1152/jappl.1998.85.2.764

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Wank V, Frick U, Schmidtbleicher D. Kinematics and electromyography of lower limb muscles in overground and treadmill running. Int J Sports Med. 1998;19(7):455–461. PubMed ID: 9839841 doi:10.1055/s-2007-971944

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Nigg BM, De Boer RW, Fisher V. A kinematic comparison of overground and treadmill running. Med Sci Sports Exerc. 1995;27(1):98–105. PubMed ID: 7898346

  • 44.

    Napier C, Esculier JF, Hunt MA. Gait retraining: out of the lab and onto the streets with the benefit of wearables. Br J Sports Med. 2017;51(23):1642–1643. PubMed ID: 29066433 doi:10.1136/bjsports-2017-098637

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Willy RW. Innovations and pitfalls in the use of wearable devices in the prevention and rehabilitation of running related injuries. Phys Ther Sport. 2018;29:26–33. PubMed ID: 29172095 doi:10.1016/j.ptsp.2017.10.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 273 273 59
Full Text Views 32 32 4
PDF Downloads 16 16 3