Postural Stability When Walking and Exposed to Mediolateral Oscillatory Motion: Effect of Oscillation Waveform

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

Postural stability can be threatened by the low-frequency motions in transport that are usually quantified by their root-mean-square (r.m.s.) acceleration. This study investigated how the stability of walking people depends on the waveform of 1- and 2-Hz mediolateral oscillations of the surface on which they walk. Walking on a treadmill, 20 subjects were perturbed by random oscillations of the treadmill with one-third octave bandwidths: different waveforms with the same r.m.s. acceleration and different waveforms with the same peak acceleration. Stability was measured subjectively and objectively by the velocity of the center of pressure in the mediolateral direction. Subjective and objective measures of walking instability increased with increasing r.m.s. acceleration of oscillations having the same peak acceleration. These same measures of instability were also affected by the peak acceleration when the r.m.s. magnitude of the oscillations was constant, especially with 1-Hz oscillations. It is concluded that r.m.s. measures of acceleration are insufficient to predict the postural stability of walking passengers exposed to mediolateral oscillations and that peaks in the oscillations should also be taken into account.

The authors are with Human Factors Research Unit, Institute of Sound and Vibration Research, University of Southampton, Southampton, United Kingdom.

Griffin (M.J.Griffin@soton.ac.uk) is corresponding author.
Journal of Applied Biomechanics
Article Sections
References
  • 1.

    British Standards Institution. Measurement and Evaluation of Human Exposure to Whole-Body Mechanical Vibration. London, UK: British Standards Institution; 1987.

    • Search Google Scholar
    • Export Citation
  • 2.

    International Organization for Standardization. Mechanical Vibration and Shock—Evaluation of Human Exposure to Whole-Body Vibration—Part 1: General Requirements. Geneva, Switzerland: International Organization for Standardization; 1997.

    • Search Google Scholar
    • Export Citation
  • 3.

    Griffin MJ. Subjective equivalence of sinusoidal and random whole-body vibration. J Acoust Soc Am. 1976;60(5):11401145. PubMed ID: 977840 doi:10.1121/1.381215

  • 4.

    Griffin MJWhitham EM. Discomfort produced by impulsive whole-body vibration. J Acoust Soc Am. 1980;68(5):12771284. doi:10.1121/1.385121

  • 5.

    Howarth HVCGriffin MJ. Subjective reaction to vertical mechanical shocks of various waveforms. J Sound Vib. 1991;147(3):395408. doi:10.1016/0022-460X(91)90488-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Ruffell CMGriffin MJ. Effects of 1-Hz and 2-Hz transient vertical vibration on discomfort. J Acoust Soc Am. 1995;98(4):21572164. doi:10.1121/1.413330

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Griffin MJ. A comparison of standardized methods for predicting the hazards of whole-body vibration and repeated shocks. J Sound Vib. 1998;215(4):883914. doi:10.1006/jsvi.1998.1600

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Matsumoto YGriffin MJ. Nonlinear subjective and biodynamic responses to continuous and transient whole-body vibration in the vertical direction. J Sound Vib. 2005;287(4–5):919937. doi:10.1016/j.jsv.2004.12.024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Thuong OGriffin MJ. The vibration discomfort of standing persons: evaluation of random and transient motions. Ergonomics. 2011;54(12):12281239. PubMed ID: 22103730 doi:10.1080/00140139.2011.624199

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Horak FBNashner LM. Central programming of postural movements: adaptation to altered support-surface configurations. J Neurophysiol. 1986;55:13691381. PubMed ID: 3734861 doi:10.1152/jn.1986.55.6.1369

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Tang PFWoollacott MHChong RKY. Control of reactive balance adjustments in perturbed human walking: roles of proximal and distal postural muscle activity. Exp Brain Res. 1998;119:141152. PubMed ID: 9535563 doi:10.1007/s002210050327

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Maki BEOstrovski G. Do postural responses to transient and continuous perturbations show similar vision and amplitude dependence? J Biomech. 1993;26(10):11811190. PubMed ID: 8253823 doi:10.1016/0021-9290(93)90066-N

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Maki BEOstrovski G. Scaling of postural responses to transient and continuous perturbations. Gait Posture. 1993;1:93104. doi:10.1016/0966-6362(93)90020-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Runge CFShupert CLHorak FBZajac FE. Ankle and hip postural strategies defined by joint torques. Gait Posture. 1999;10:161170. PubMed ID: 10502650 doi:10.1016/S0966-6362(99)00032-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Sari HMGriffin MJ. Postural stability when walking: effect of the frequency and magnitude of lateral oscillatory motion. Appl Ergon. 2014;45(2):293299. PubMed ID: 23684118 doi:10.1016/j.apergo.2013.04.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Franz JRFrancis CAAllen MSThelen DG. Visuomotor entrainment and the frequency-dependent response of walking balance to perturbations. IEEE Trans Neural Syst Rehabil Eng. 2017;25(8):11351142. PubMed ID: 28113592 doi:10.1109/TNSRE.2016.2603340

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Hof AFGazendam MGJSinke WE. The condition for dynamic stability. J Biomech. 2005;38:18. PubMed ID: 15519333 doi:10.1016/j.jbiomech.2004.03.025

  • 18.

    Patricia MYWilken JMDingwell JB. Dynamic margins of stability during human walking in destabilizing environments. J Biomech. 2012;45(6):10531059. PubMed ID: 22326059 doi:10.1016/j.jbiomech.2011.12.027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    McAndrew PMWilken JMDingwell JB. Dynamic stability of human walking in visually and mechanically destabilizing environments. J Biomech. 2011;44(4):644649. PubMed ID: 21094944 doi:10.1016/j.jbiomech.2010.11.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Cornwall MWMcPoil TG. Velocity of the center of pressure during walking. J Am Podiatr Med Assoc. 2000;90(7):334338. PubMed ID: 10933001 doi:10.7547/87507315-90-7-334

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Ekdahl CJarnlo GBAndersson SI. Standing balance in healthy subjects. Evaluation of a quantitative test battery on a force platform. Scand J Rehabil Med. 1989;21:187195. PubMed ID: 2631193

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Palmieri RMIngersoll CDStone MBKrause BA. Center-of-pressure parameters used in the assessment of postural control. J Sport Rehabil. 2002;11:5166. doi:10.1123/jsr.11.1.51

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Sari HMGriffin MJ. Postural stability when walking and exposed to lateral oscillatory motion: benefits from hand supports. Ergonomics. 2015;58(2):291300. PubMed ID: 25331636 doi:10.1080/00140139.2014.967309

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Stevens SS. Psychophysics: Introduction to its Perceptual Neural and Social Prospects. Oxford, UK: Transaction Publishers; 1975.

  • 25.

    Nashner LM. Balance adjustments of humans perturbed while walking. J Neurophysiol. 1980;44:650664. PubMed ID: 7431045 doi:10.1152/jn.1980.44.4.650

  • 26.

    McAndrew PMDingwell JBWilken JM. Walking variability during continuous pseudo-random oscillations of the support surface and visual field. J Biomech. 2010;43:14701475. PubMed ID: 20346453 doi:10.1016/j.jbiomech.2010.02.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 55 55 8
Full Text Views 4 4 3
PDF Downloads 1 1 1
Altmetric Badge
PubMed
Google Scholar