Going Short: The Effects of Short-Travel Key Switches on Typing Performance, Typing Force, Forearm Muscle Activity, and User Experience

Click name to view affiliation

Sarah M. Coppola Harvard T.H. Chan School of Public Health

Search for other papers by Sarah M. Coppola in
Current site
Google Scholar
PubMed
Close
*
,
Philippe C. Dixon Harvard T.H. Chan School of Public Health

Search for other papers by Philippe C. Dixon in
Current site
Google Scholar
PubMed
Close
*
,
Boyi Hu Harvard T.H. Chan School of Public Health

Search for other papers by Boyi Hu in
Current site
Google Scholar
PubMed
Close
*
,
Michael Y.C. Lin Microsoft Corporation

Search for other papers by Michael Y.C. Lin in
Current site
Google Scholar
PubMed
Close
*
, and
Jack T. Dennerlein Harvard T.H. Chan School of Public Health
Northeastern University

Search for other papers by Jack T. Dennerlein in
Current site
Google Scholar
PubMed
Close
*
Restricted access

This study examined the effects of 4 micro-travel keyboards on forearm muscle activity, typing force, typing performance, and self-reported discomfort and difficulty. A total of 20 participants completed typing tasks on 4 commercially available devices with different key switch characteristics (dome, scissors, and butterfly) and key travels (0.55, 1.3, and 1.6 mm). The device with short-travel (0.55 mm) and a dome-type key switch mechanism was associated with higher muscle activities (6%–8%, P < .01), higher typing force (12%, P < .01), slower typing speeds (8%, P < .01), and twice as much discomfort (P < .05), compared with the other 3 devices: short-travel (0.55 mm) and butterfly switch design and long travel (1.3 and 1.6 mm) with scissor key switches. Participants rated the devices with larger travels (1.3 and 1.6 mm) with least discomfort (P = .02) and difficulty (P < .01). When stratified by sex/gender, these observed associations were larger and more significant in the female participants compared with male participants. The devices with similar travel but different key switch designs had difference in outcomes and devices with different travel were sometimes not different. The results suggest that key travel alone does not predict typing force or muscle activity.

Coppola, Dixon, Hu, and Dennerlein are with the Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA. Lin is with Microsoft Corporation, Redmond, WA, USA. Dennerlein is also with the Department of Physical Therapy, Movement and Rehabilitation Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA.

Dennerlein (j.dennerlein@northeastern.edu) is corresponding author.
  • Collapse
  • Expand
  • 1.

    HFES 100 Committee. ANSI/HFES 100-2007 Human Factors Engineering of Computer Workstations. 2007. Santa Monica, CA: Human Factors and Ergonomics Society.

    • Search Google Scholar
    • Export Citation
  • 2.

    Varcholik PD, LaViola JJ, Hughes CE. Establishing a baseline for text entry for a multi-touch virtual keyboard. Int J Hum Comput Stud. 2012;70:657672. doi:10.1016/j.ijhcs.2012.05.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Chaparro BS, Phan MH, Jardina JR. Usability and performance of tablet keyboards: Microsoft Surface vs. Apple iPad. Proceedings of the Human Factors and Ergonomics Society Annual Meeting. 2013; 57(1):13281332. doi:10.1177/1541931213571293

    • Search Google Scholar
    • Export Citation
  • 4.

    Radwin RG, Ruffalo BA. Computer key switch force-displacement characteristics and short term effects on localized fatigue. Ergonomics. 1999;42(1):160170. PubMed ID: 9973878 doi:10.1080/001401399185865

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Pereira A, Hsieh CM, Laroche C, Rempel D. The effect of keyboard key spacing on typing speed, error, usability, and biomechanics, Part 2: vertical spacing. Hum Factors. 56, 2014:752759. doi:10.1177/0018720813502524

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Rempel D, Serina E, Klinenberg E, et al. The effect of keyboard keyswitch make force on applied force and finger flexor muscle activity. Ergonomics. 1997;40:800808. PubMed ID: 9336104 doi:10.1080/001401397187793

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Gerard MJ, Armstrong A, Franzblau BJ, Martin DM, Rempel DM. The effect of keyswitch stiffness on typing force, finger electromyography, and subjective discomfort. Am Ind Hyg Assoc J. 1999;60(6):762769. PubMed ID: 10635542 doi:10.1080/00028899908984499

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Gerard MJ, Armstrong MJ, Foulke T, Martin A. Effects of key stiffness on force and the development of fatigue while typing. Am Ind Hyg Assoc J. 1996;57(9):849854. PubMed ID: 8865594 doi:10.1080/15428119691014549

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Armstrong TJ, Foulke JA, Martin BJ, Gerson J, Rempel DM. Investigation of applied forces in alphanumeric keyboard work. Am Ind Hyg Assoc J. 1994;55(1):3035. PubMed ID: 8116526 doi:10.1080/15428119491019230

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Martin BJ, Armstrong TJ, Reed M, Dennerlein J, Rempel D. Investigation of techniques designed to evaluate finger forces in alphanumeric keyboard work. J Biomech. 1994;27:765765. doi:10.1016/0021-9290(94)91240-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Chaparro BS, Phan MH, Siu C, Jardina JR. User performance and satisfaction of tablet physical keyboards. J Usability Stud. 2014;9(2):7080.

    • Search Google Scholar
    • Export Citation
  • 12.

    Asundi K, Odell D. Effects of keyboard keyswitch design: a review of the current literature. Work. 2011;39:151159. PubMed ID: 21673442.

  • 13.

    Qin J, Trudeau M, Katz JN, Buchholz B, Dennerlein JT. Biomechanical loading on the upper extremity increases from single key tapping to directional tapping. J Electromyogr Kinesiol. 2011;21:587594. PubMed ID: 21216620 doi:10.1016/j.jelekin.2010.12.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Ripat J, Scatliff T, Giesbrecht E, Quanbury A, Friesen M, Kelso S. The effect of alternative keyboards on severity of symptoms and functional status of individuals with work related upper extremity disorders. J Occup Rehabil. 2006;16:707718. PubMed ID: 17086502 doi:10.1007/s10926-006-9054-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Ziba. Can Ergonomics find a place in the home?. 1994 https://web.archive.org/web/20140330211941/http://www.ziba.com/work/microsoft-natural-keyboard. Accessed September 24, 2018.

    • Search Google Scholar
    • Export Citation
  • 16.

    Pascarelli EF, Kella JJ. Soft-tissue injuries related to use of the computer keyboard. A clinical study of 53 severely injured persons. J Occup Med. 1993;35(5):522532. PubMed ID: 8515325.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Feuerstein M, Armstrong T, Hickey P, Lincoln A. Computer keyboard force and upper extremity symptoms. J Occup Environ Med. 1997;39(12):11441153. PubMed ID: 9429167 doi:10.1097/00043764-199712000-00008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Marcus M, Gerr F, Monteilh C, et al. A prospective study of computer users: II. Postural risk factors for musculoskeletal symptoms and disorders. Am J Ind Med. 41, 2002:236249. doi:10.1002/ajim.10067

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Bufton MJ, Maklin RW, Nagurka ML, Simoneau GG. Effect of keyswitch design of desktop and notebook keyboards related to key stiffness and typing force. Ergonomics. 2006;49(10):9961012. PubMed ID: 16803729 doi:10.1080/00140130600577437

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Rempel D, Tittiranonda P, Burastero S, Hudes M, So Y. Effect of keyboard keyswitch design on hand pain. J Occup Environ Med. 1999;41(2):111119. PubMed ID: 10029956 doi:10.1097/00043764-199902000-00006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Jindrich DL, Balakrishnan AD, Dennerlein JT. Effects of keyswitch design and finger posture on finger joint kinematics and dynamics during tapping on computer keyswitches. Clin Biomech. 2004;19(6):600608. doi:10.1016/j.clinbiomech.2004.03.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Comparing Mechanical, Membrane and Scissor-Switch Membrane Keyboards—Ergonomic Considerations of Keyswitch Type. Ergopedia, CA; 2013. http://www.ergopedia.ca/ergonomic_concepts/Mechanical_Keyswitches_Membrane_Keyswitches_and_Scissor_Switch_Membrane_Keyswitches_Ergonomic_Considerations.html. Updated November 28, 2013. Accessed October 4, 2017.

    • Search Google Scholar
    • Export Citation
  • 23.

    Cunningham A. Hands-On With the New MacBook Pros, Their Keyboard, and the Touch Bar. arsTechnica; 2016. https://arstechnica.com/gadgets/2016/10/hands-on-with-the-new-macbook-pros-their-keyboard-and-the-touch-bar/. Accessed March 30, 2017.

    • Search Google Scholar
    • Export Citation
  • 24.

    Sisley J, Kia K, Johnson PW, Kim JH. Effects of key travel distances on biomechanical exposures and typing performance during ultralow key travel keyboards. Proceedings of the Human Factors and Ergonomics Society Annual Meeting. 2017;61(1):981985.

    • Search Google Scholar
    • Export Citation
  • 25.

    Kia K, Sisley J, Johnson PW, Kim JH. Differences i typing forces, muscle activity, wrist posture, typing performance, ad self-reported comfort among conventional and ultra-low travel keyboards. Appl Ergon. 2019;74:1016. PubMed ID: 30487088 doi:10.1016/j.apergo.2018.07.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Kim JH, Aulck L, Bartha MC, Harper CA, Johnson PW. Differences in typing forces, muscle activity, comfort, and typing performance among virtual, notebook, and desktop keyboards. Appl Ergon. 2014;45:14061413. doi:10.1016/j.apergo.2014.04.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Hoyle WS, Bartha MC, Harper CA, Peres SC. Low profile keyboard design: the effect of physical key characteristics on typing productivity and user preference. Proceedings of the Human Factors and Ergonomics Society. 2013;57(1):13481352. doi:10.1177/1541931213571297

    • Search Google Scholar
    • Export Citation
  • 28.

    Hughes M, Johnson PW. Differences in the three dimensional typing forces between short and long travel keyboards’. Proceedings of the Human Factors and Ergonomics Society Annual Meeting. 2014;58(1):14471450. doi:10.1177/1541931214581302

    • Search Google Scholar
    • Export Citation
  • 29.

    Won EJ, Johnson PW, Punnett L, Dennerlein JT. Upper extremity biomechanics in computer tasks differ by gender. J Electromyogr Kinesiol. 2009;19(3):428436. PubMed ID: 18207419 doi:10.1016/j.jelekin.2007.11.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Cote JN. A critical review on physical factors and functional characteristics that explain a sex/gender difference in work-related neck/shoulder disorders. Ergonomics, 2012;55(2):173182. doi:10.1080/00140139.2011.586061

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Bruno Garza J, Eijckelhof B, Johnson P, et al. Observed differences in upper extremity forces, muscle efforts, postures, velocities and accelerations across computer activities in a field study of office workers. Ergonomics. 2012;55(6):670681. PubMed ID: 22455518 doi:10.1080/00140139.2012.657692

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Perotto A. Anatomical Guide for the Electromyographer: The Limbs and Trunk. Springfield, IL: Charles C Thomas; 1994.

  • 33.

    Lin M, Young J, Dennerlein J. Evaluating the effect of four different pointing device designs on upper extremity posture and muscle activity during mousing tasks. Appl Ergon. 2015;47:259264. PubMed ID: 25479996 doi:10.1016/j.apergo.2014.10.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Dixon PC, Loh JJ, Michaud-Paquette Y, Pearsall DJ. biomechZoo: an open-source toolbox for the processing, analysis, and visualization of biomechanical movement data. Comput Methods Programs Biomed. 2017;140:110. PubMed ID: 28254065 doi:10.1016/j.cmpb.2016.11.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Hoozemans MJM, van Dieën JH. Prediction of handgrip forces using surface EMG of forearm muscles. J Electromyogr Kinesiol. 2005;15(4):358366. PubMed ID: 15811606 doi:10.1016/j.jelekin.2004.09.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Messing K, Mager Stellman J. Sex, gender and women’s occupational health: the importance of considering mechanism. Environ Res. 2006;101(2):149162. PubMed ID: 16709471 doi:10.1016/j.envres.2005.03.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Messing K, Stock SR, Tissot F. Should studies of risk factors for musculoskeletal disorders be stratified by gender? Lessons from the 1998 Québec Health and Social Survey. Scand J Work Environ Health. 2009;35(2):96112. PubMed ID: 19305934 doi:10.5271/sjweh.1310

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Härenstam A. Exploring gender, work and living conditions, and health– suggestions for contextual and comprehensive approaches. Scand J Work Environ Health. 2009;35(2):127133. doi:10.5271/sjweh.1308

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Messing K, Punnett L, Bond M, et al. Be the fairest of them all: challenges and recommendations for the treatment of gender in occupational health research. Am J Ind Med. 2003;43(6):618629. PubMed ID: 12768612 doi:10.1002/ajim.10225

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Habib RR, Messing K. Gender, women’s work and ergonomics. Ergonomics. 2012;55:129132. PubMed ID: 22248388 doi:10.1080/00140139.2011.646322

  • 41.

    Cook TM, Ludewig PM, Rosecrance JC, Zimmermann CL, Gerleman DG. Electromyographic effects of ergonomic modifications in selected meatpacking tasks. Appl Ergon. 1999;30(3):229233. PubMed ID: 10327086 doi:10.1016/S0003-6870(98)00024-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Pereira A, Lee DL, Sadeeshkumar H, Laroche C, Odell D, Rempel D. The effect of keyboard key spacing on typing speed, error, usability, and biomechanics: part 1. Hum Factors. 2013;55(3):557566. PubMed ID: 23829030 doi:10.1177/0018720812465005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3293 480 152
Full Text Views 106 23 3
PDF Downloads 61 10 2