Are Planar Simulation Models Affected by the Assumption of Coincident Joint Centers at the Hip and Shoulder?

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

Planar simulation models which assume coincident joint centers at the hip and shoulder are often used to investigate subject-specific maximal performances rather than 3-dimensional models due to the viability of determining subject-specific parameters. To investigate the effect of coincident joint centers on model accuracy, 3 variants of a 16-segment planar subject-specific angle-driven model were evaluated using an elite cricket fast bowling performance: (a) planar representation assuming coincident joint centers, (b) planar representation with noncoincident hip joint centers, and (c) planar representation with noncoincident hip and shoulder joint centers. Model (c) with noncoincident hip and shoulder joint centers best matched the recorded performance with better estimates of the ground reaction force (mean RMS differences: (a) 18%, (b) 12%, and (c) 11%) and ball release velocity (mean RMS differences: (a) 3.8%, (b) 3.2%, and (c) 1.7%) due to a better representation of the mass center location and link system endpoint velocity. Investigations into the subject-specific performance of maximal effort movements, where nonsagittal plane rotations of the pelvis and torso could affect model accuracy, should consider the use of noncoincident hip and shoulder joint centers within a planar model rather than using a simple planar model or a full 3-dimensional model.

The authors are with the School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, United Kingdom.

Felton (P.J.Felton@lboro.ac.uk) is corresponding author.
Journal of Applied Biomechanics
Article Sections
References
  • 1.

    Rajagopal ADembia CLDeMers MSDelp DDHicks JLDelp SL. Full-body musculoskeletal model for muscle-driven simulation of human gait. IEEE Trans Biomed Eng. 2016;63(10):20682079. PubMed ID: 27392337 doi:10.1109/TBME.2016.2586891

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Shoa QBassett DNManal KBuchanan TS. An EMG-driven model to estimate muscle forces and joint moments in stroke patients. Comput Biol Med. 2009;39(12):10831088. doi:10.1016/j.compbiomed.2009.09.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Dao TT. Rigid musculoskeletal models of the human body systems: a review. J Musculoskelet Res. 2016;19(3):1630001. doi:10.1142/S0218957716300015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Delp SLAnderson FCArnold ASet al. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 2007;54(11):19401950. PubMed ID: 18018689 doi:10.1109/TBME.2007.901024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Reinbolt JASeth ADelp SL. Simulation of human movement: applications using OpenSim. Procedia IUTAM. 2011;2:186198. doi:10.1016/j.piutam.2011.04.019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Wilson CKing MAYeadon MR. Determination of subject-specific model parameters for visco-elastic elements. J Biomech. 2006;39:18831890. PubMed ID: 16002080 doi:10.1016/j.jbiomech.2005.05.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Allen SJKing MAYeadon MR. Models incorporating pin joints are suitable for simulating performance but unsuitable for simulating internal loading. J Biomech. 2012;45:14301436. PubMed ID: 22406467 doi:10.1016/j.jbiomech.2012.02.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Yeadon MRKing MA. Computer simulation modelling in sport. In: Payton CJBartlett RM eds. Biomechanical Evaluation of Movement in Sport and Exercise: BASES Guidelines. London, UK: Routledge; 2018:176205.

    • Search Google Scholar
    • Export Citation
  • 9.

    Pandy MGZajac FESim ELevine WS. An optimal control model for maximum-height human jumping. J Biomech. 1990;23(12):11851198. PubMed ID: 2292598 doi:10.1016/0021-9290(90)90376-E

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Cole GKNigg BMvan Den Bogert AJGerritsen KGM. Lower extremity joint loading during impact in running. Clin Biomech. 1996;11:181193. doi:10.1016/0268-0033(96)00008-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Ackermann Mvan den Bogert AJ. Optimality principles for model-based prediction of human gait. J Biomech. 2010;43(6):10551060. PubMed ID: 20074736 doi:10.1016/j.jbiomech.2009.12.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Hiley MJYeadon MRBuxton E. Consistency of performances in the Tkatchev release and re-grasp on high bar. Sports Biomech. 2007;6:121130. PubMed ID: 17892090 doi:10.1080/14763140701324511

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Begon MWieber P-BYeadon MR. Kinematics estimation of straddled movements on high bar from a limited number of skin markers using a chain model. J Biomech. 2008;41:581586. PubMed ID: 18036597 doi:10.1016/j.jbiomech.2007.10.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Worthington PJKing MARanson CA. Relationships between fast bowling technique and ball release speed in cricket. J Appl Biomech. 2013;29:7884. PubMed ID: 22813926 doi:10.1123/jab.29.1.78

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Wood GAJennings LS. On the use of spline functions for data smoothing. J Biomech. 1979;12:477479. PubMed ID: 457702 doi:10.1016/0021-9290(79)90033-2

  • 16.

    Yeadon MRKing MA. Evaluation of a torque-driven simulation model of tumbling. J Appl Biomech. 2002;18:195206. doi:10.1123/jab.18.3.195

  • 17.

    Yeadon MR. The simulation of aerial movement—II. A mathematical inertia model of the human body. J Biomech. 1990;23:6774. PubMed ID: 2307693 doi:10.1016/0021-9290(90)90370-I

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Kane TRLevinson DA. Dynamics Theory and Applications. New York, NY: McGraw Hill; 1985.

  • 19.

    Allen SJKing MAYeadon MR. Is a single or double arm technique more advantageous in triple jumping? J Biomech. 2010;43:31563161. PubMed ID: 20709319 doi:10.1016/j.jbiomech.2010.07.030

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Pain MTGChallis JH. The role of the heel pad and shank soft tissue during impacts: a further resolution of a paradox. J Biomech. 2001;34:327333. PubMed ID: 11182123 doi:10.1016/S0021-9290(00)00199-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Kirkpatrick SGelatt CDVecchi MP. Optimization by simulated annealing. Science. 1983;220:671680. PubMed ID: 17813860 doi:10.1126/science.220.4598.671

  • 22.

    Hubbard MAlaways LW. Rapid and accurate estimation of release conditions in the javelin throw. J Biomech. 1989;22:583595. PubMed ID: 2808442 doi:10.1016/0021-9290(89)90010-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Wells DDols ADonnelly CJAlderson J. An examination of ball release determination methods in cricket bowling and its influence on bowling legality. Paper presented at: Proceedings of the 5th World Congress of Science & Medicine in Cricket; March 23–27 2015. Sydney, Australia.

    • Export Citation
  • 24.

    Lafortune MACavanagh PRSommer HJ IIIKalenak A. Three-dimensional kinematics of the human knee during walking. J Biomech. 1992;25:347357. PubMed ID: 1583014 doi:10.1016/0021-9290(92)90254-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Minetti AEBelli G. A model for the estimation of visceral mass displacement in periodic movements. J Biomech. 1994;27:97101. PubMed ID: 8106540 doi:10.1016/0021-9290(94)90036-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Davis KBlanksby B. The segmental components of fast bowling in cricket. AJHPER. 1976;71(suppl):68.

  • 27.

    Elliott BCFoster DHGray S. Biomechanical and physical factors influencing fast bowling. Aust J Sci Med Sport. 1986;18:1621.

  • 28.

    Foster DJohn DElliott BAckland TFitch K. Back injuries to fast bowlers in cricket: a prospective study. Br J Sports Med. 1989;23:150154. PubMed ID: 2620228 doi:10.1136/bjsm.23.3.150

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Davis KBlanksby B. A cinematographic analysis of fast bowling in cricket. AJHPER. 1976;71(suppl):915.

Article Metrics
All Time Past Year Past 30 Days
Abstract Views 52 52 10
Full Text Views 19 19 1
PDF Downloads 9 9 0
Altmetric Badge
PubMed
Google Scholar