Activation-Dependent Changes in Soleus Length–Tension Behavior Augment Ankle Joint Quasi-Stiffness

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

The triceps surae muscle–tendon units are important in governing walking performance, acting to regulate mechanical behavior of the ankle through interaction between active muscle and passive elastic structures. Ankle joint quasi-stiffness (the slope of the relation between ankle moment and ankle rotation, kA) is a useful aggregate measure of this mechanical behavior. However, the role of muscle activation and length–tension behavior in augmenting kA remains unclear. In this study, 10 subjects completed eccentric isokinetic contractions at rest and at 2 soleus activation levels (25% and 75% isometric voluntary contraction) prescribed using electromyographic biofeedback. Ultrasound imaging quantified activation-dependent modulation of soleus muscle length–tension behavior and its role in augmenting kA. The authors found that soleus muscle stiffness (kM) and kA exhibit nonlinear relations with muscle activation and both were more sensitive to the onset of activation than to subsequent increases in activation. Our findings also suggest that kA can be modulated via activation through changes in soleus muscle length–tension behavior. However, this modulation is more complex than previously appreciated—reflecting interaction between active muscle and passive elastic tissues. Our findings may have implications for understanding normal and pathological ankle joint function and the design of impedance-based prostheses.

The authors are with the Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA.

Franz (jrfranz@email.unc.edu) is corresponding author.
  • 1.

    Lichtwark GA, Wilson AM. Effects of series elasticity and activation conditions on muscle power output and efficiency. J Exp Biol. 2005;208(pt 15):2845–2853. PubMed ID: 16043589 doi:10.1242/jeb.01710

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Lichtwark GA, Bougoulias K, Wilson AM. Muscle fascicle and series elastic element length changes along the length of the human gastrocnemius during walking and running. J Biomech. 2007;40(1):157–164. PubMed ID: 16364330 doi:10.1016/j.jbiomech.2005.10.035

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Zelik KE, Huang TW, Adamczyk PG, Kuo AD. The role of series ankle elasticity in bipedal walking. J Theor Biol. 2014;346:75–85. PubMed ID: 24365635 doi:10.1016/j.jtbi.2013.12.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Rouse EJ, Gregg RD, Hargrove LJ, Sensinger JW. The difference between stiffness and quasi-stiffness in the context of biomechanical modeling. IEEE Trans Biomed Eng. 2013;60(2):562–568. PubMed ID: 23212310 doi:10.1109/TBME.2012.2230261

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Shamaei K, Sawicki GS, Dollar AM. Estimation of quasi-stiffness and propulsive work of the human ankle in the stance phase of walking. PLoS ONE. 2013;8(3):59935. PubMed ID: 23555839 doi:10.1371/journal.pone.0059935

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Kubo K. Active muscle stiffness in the human medial gastrocnemius muscle in vivo. J Appl Physiol. 2014;117(9):1020–1026. PubMed ID: 25170073 doi:10.1152/japplphysiol.00510.2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Collins JD, Arch ES, Crenshaw JR, et al. Net ankle quasi-stiffness is influenced by walking speed but not age for older adult women. Gait Posture. 2018;62:311–316. PubMed ID: 29609159 doi:10.1016/j.gaitpost.2018.03.031

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Lee H, Rouse EJ, Krebs HI. Summary of human ankle mechanical impedance during walking. IEEE J Transl Eng Health Med. 2016;4:1–7. PubMed ID: 27766187 doi:10.1109/JTEHM.2016.2601613

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Shamaei K, Cenciarini M, Dollar AM. On the mechanics of the ankle in the stance phase of the gait. Conf Proc IEEE Eng Med Biol Soc. 2011; 2011:8135–8140. PubMed ID: 22256230

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Lee H, Wang S., Hogan N. Relationship between ankle stiffness structure and muscle activation. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:4879–4882. PubMed ID: 23367021

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Crenna P, Frigo C. Dynamics of the ankle joint analyzed through moment-angle loops during human walking: gender and age effects. Hum Mov Sci. 2011;30(6):1185–1198. PubMed ID: 21669469 doi:10.1016/j.humov.2011.02.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Farris DJ, Raiteri BJ. Modulation of leg joint function to produce emulated acceleration during walking and running in humans. R Soc Open Sci. 2017;4(3):160901. PubMed ID: 28405377 doi:10.1098/rsos.160901

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Frigo C, Crenna P, Jensen LM. Moment-angle relationship at lower limb joints during human walking at different velocities. J Electromyogr Kinesiol. 1996;6(3):177–190. doi:10.1016/1050-6411(96)00030-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Farris DJ, Raiteri BJ. Elastic ankle muscle-tendon interactions are adjusted to produce acceleration during walking in humans. J Exp Biol. 2017;220(pt 22):4252–4260. PubMed ID: 28954818 doi:10.1242/jeb.159749

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Grabowski AM, D’Andrea S. Effects of a powered ankle-foot prosthesis on kinetic loading of the unaffected leg during level-ground walking. J Neuroeng Rehabil. 2013;10:49. PubMed ID: 23758860 doi:10.1186/1743-0003-10-49

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Lee H, Krebs HI, Hogan N. Multivariable dynamic ankle mechanical impedance with active muscles. IEEE Trans Neural Syst Rehabil Eng. 2014;22(5):971–981. PubMed ID: 25203497 doi:10.1109/TNSRE.2014.2328235

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Lee H, Krebs HI, Hogan N. Multivariable dynamic ankle mechanical impedance with relaxed muscles. IEEE Trans Neural Syst Rehabil Eng. 2014;22(6):1104–1114. PubMed ID: 24686292 doi:10.1109/TNSRE.2014.2313838

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Nalam V, Lee H. Environment-dependent modulation of human ankle stiffness and its implication for the design of lower extremity robots. Paper presented at: 15th International Conference on Ubiquitous Robots, UR 2018;  June 27–30, 2018. Honolulu, HI: Institute of Electrical and Electronics Engineers Inc. https://ieeexplore.ieee.org/document/8442204. Accessed November 8, 2018.

    • Export Citation
  • 19.

    Atri R, Marquez JS, Leung C. Smart data-driven optimization of powered prosthetic ankles using surface electromyography. Sensors. 2018;18(8):2705. doi:10.3390/s18082705

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Riemann BL, DeMont RG, Ryu K, Lephart SM. The effects of sex, joint angle, and the gastrocnemius muscle on passive ankle joint complex stiffness. J Athl Train. 2001;36(4):369–375. PubMed ID: 12937478

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Chino K, Takahashi H. Association of gastrocnemius muscle stiffness with passive ankle joint stiffness and sex-related difference in the joint stiffness. J Appl Biomech. 2018;34(3):169–174. PubMed ID: 29139316 doi:10.1123/jab.2017-0121

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Chino K, Takahashi H. Measurement of gastrocnemius muscle elasticity by shear wave elastography: association with passive ankle joint stiffness and sex differences. Eur J Appl Physiol. 2016;116(4):823–830. PubMed ID: 26874517 doi:10.1007/s00421-016-3339-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Mazzaro N, Nielsen JF, Grey MJ, Sinkjaer T. Decreased contribution from afferent feedback to the soleus muscle during walking in patients with spastic stroke. J Stroke Cerebrovasc Dis. 2007;16(4):135–144. PubMed ID: 17689409 doi:10.1016/j.jstrokecerebrovasdis.2007.01.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Silva A, Sousa AS, Pinheiro R, et al. Activation timing of soleus and tibialis anterior muscles during sit-to-stand and stand-to-sit in post-stroke vs healthy subjects. Somatosens Mot Res. 2013;30(1):48–55. PubMed ID: 23339551 doi:10.3109/08990220.2012.754755

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Hawkins D, Lum C, Gaydos D, Dunning R. Dynamic creep and pre-conditioning of the Achilles tendon in-vivo. J Biomech. 2009;42(16):2813–2817. PubMed ID: 19762028 doi:10.1016/j.jbiomech.2009.08.023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000;10(5):361–374. PubMed ID: 11018445 doi:10.1016/S1050-6411(00)00027-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Waanders JB, Hortobágyi T, Murgia A, DeVita P, Franz JR. Advanced age redistributes positive but not negative leg joint work during walking [published online ahead of print November 1, 2018]. Med Sci Sports Exerc. 2018. PubMed ID: 30395049 doi:10.1249/MSS.0000000000001828

    • Search Google Scholar
    • Export Citation
  • 28.

    McClelland JA, Webster KE, Feller JA, Menz HB. Knee kinematics during walking at different speeds in people who have undergone total knee replacement. Knee. 2011;18(3):151–155. PubMed ID: 20537900 doi:10.1016/j.knee.2010.04.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Farris DJ, Lichtwark GA. UltraTrack: software for semi-automated tracking of muscle fascicles in sequences of B-mode ultrasound images. Comput Methods Programs Biomed. 2016;128:111–118. PubMed ID: 27040836 doi:10.1016/j.cmpb.2016.02.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Rasske K, Thelen DG, Franz JR. Variation in the human Achilles tendon moment arm during walking. Comput Methods Biomech Biomed Engin. 2017;20(2):201–205. PubMed ID: 27460018 doi:10.1080/10255842.2016.1213818

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Silder A, Heiderscheit B, Thelen DG. Active and passive contributions to joint kinetics during walking in older adults. J Biomech. 2008;41(7):1520–1527. PubMed ID: 18420214 doi:10.1016/j.jbiomech.2008.02.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Sartori M, Maculan M, Pizzolato C, Reggiani M, Farina D. Modeling and simulating the neuromuscular mechanisms regulating ankle and knee joint stiffness during human locomotion. J Neurophysiol. 2015;114(4):2509–2527. PubMed ID: 26245321 doi:10.1152/jn.00989.2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Campbell KS, Moss RL. A thixotropic effect in contracting rabbit psoas muscle: prior movement reduces the initial tension response to stretch. J Physiol. 2000;525(pt 2):531–548. doi:10.1111/j.1469-7793.2000.00531.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    de Vlugt E, van Eesbeek S, Baines P, Hilte J, Meskers CG, de Groot JH. Short range stiffness elastic limit depends on joint velocity. J Biomech. 2011; 44(11):2106–2112. PubMed ID: 21640995 doi:10.1016/j.jbiomech.2011.05.022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Morse CI, Thom JM, Birch KM, Narici MV. Changes in triceps surae muscle architecture with sarcopenia. Acta Physiol Scand. 2005;183(3):291–298. PubMed ID: 15743389 doi:10.1111/j.1365-201X.2004.01404.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Eribaum; 1988.

  • 37.

    Lamontagne A, Malouin F, Richards CL. Contribution of passive stiffness to ankle plantarflexor moment during gait after stroke. Arch Phys Med Rehabil. 2000;81(3):351–358. PubMed ID: 10724082 doi:10.1016/S0003-9993(00)90083-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Hug F, Lacourpaille L, Maïsetti O, Nordez A. Slack length of gastrocnemius medialis and Achilles tendon occurs at different ankle angles. J Biomech. 2013;46(14):2534–2538. PubMed ID: 23953502 doi:10.1016/j.jbiomech.2013.07.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Cleather DJ, Southgate DF, Bull AM. The role of the biarticular hamstrings and gastrocnemius muscles in closed chain lower limb extension. J Theor Biol. 2015;365:217–225. PubMed ID: 25451963 doi:10.1016/j.jtbi.2014.10.020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Lamontagne A, Malouin F, Richards CL. Viscoelastic behavior of plantar flexor muscle-tendon unit at rest. J Orthop Sports Phys Ther. 1997;26(5):244–252. PubMed ID: 9353687 doi:10.2519/jospt.1997.26.5.244

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Azizi E, Halenda GM, Roberts TJ. Mechanical properties of the gastrocnemius aponeurosis in wild turkeys. Integr Comp Biol. 2009;49(1):51–58. PubMed ID: 21120110 doi:10.1093/icb/icp006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Azizi E, Roberts TJ. Biaxial strain and variable stiffness in aponeuroses. J Physiol. 2009;587(pt 17):4309–4318. PubMed ID: 19596897 doi:10.1113/jphysiol.2009.173690

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Raiteri BJ, Cresswell AG, Lichtwark GA. Muscle-tendon length and force affect human tibialis anterior central aponeurosis stiffness in vivo. Proc Natl Acad Sci U S A. 2018;115(14):E3097–3105. PubMed ID: 29555756 doi:10.1073/pnas.1712697115

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Eng CM, Azizi E, Roberts TJ. Structural determinants of muscle gearing during dynamic contractions. Integr Comp Biol. 2018;58(2):207–218. PubMed ID: 29889236 doi:10.1093/icb/icy054

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Wakeling JM, Blake OM, Wong I, Rana M, Lee SS. Movement mechanics as a determinate of muscle structure, recruitment and coordination. Philos Trans R Soc Lond B Biol Sci. 2011;366(1570):1554–1564. PubMed ID: 21502126 doi:10.1098/rstb.2010.0294

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Randhawa A, Jackman ME, Wakeling JM. Muscle gearing during isotonic and isokinetic movements in the ankle plantarflexors. Eur J Appl Physiol. 2013;113(2):437–447. PubMed ID: 22777499 doi:10.1007/s00421-012-2448-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Azizi E, Brainerd EL, Roberts TJ. Variable gearing in pennate muscles. Proc Natl Acad Sci U S A. 2008;105(5):1745–1750. PubMed ID: 18230734 doi:10.1073/pnas.0709212105

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Chow RS, Medri MK, Martin DC, Leekam RN, Agur AM, McKee NH. Sonographic studies of human soleus and gastrocnemius muscle architecture: gender variability. Eur J Appl Physiol. 2000;82(3):236–244. PubMed ID: 10929218 doi:10.1007/s004210050677

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Albracht K, Arampatzis A, Baltzopoulos V. Assessment of muscle volume and physiological cross-sectional area of the human triceps surae muscle in vivo. J Biomech. 2008;41(10):2211–2218. PubMed ID: 18555257 doi:10.1016/j.jbiomech.2008.04.020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Ogihara N, Oishi M, Kanai R. Muscle architectural properties in the common marmoset (Callithrix jacchus). Primates. 2017;58(3):461–472. PubMed ID: 28484857 doi:10.1007/s10329-017-0608-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Clark WH, Franz JR. Do triceps surae muscle dynamics govern non-uniform Achilles tendon deformations? PeerJ. 2018;6:e5182. PubMed ID: 30013844 doi:10.7717/peerj.5182

  • 52.

    Rehorn MR, Schroer AK, Blemker SS. The passive properties of muscle fibers are velocity dependent. J Biomech. 2014;47(3):687–693. PubMed ID: 24360198 doi:10.1016/j.jbiomech.2013.11.044

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Onambele GL, Narici MV, Maganaris CN. Calf muscle-tendon properties and postural balance in old age. J Appl Physiol. 2006;100(6):2048–2056. doi:10.1152/japplphysiol.01442.2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Zhao H, Ren Y, Wu YN, Liu SQ, Zhang LQ. Ultrasonic evaluations of Achilles tendon mechanical properties poststroke. J Appl Physiol. 2009;106(3):843–849. doi:10.1152/japplphysiol.91212.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 184 184 29
Full Text Views 34 34 4
PDF Downloads 10 10 1