Tests to Measure Core Stability in Laboratory and Field Settings: Reliability and Correlation Analyses

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Although core stability (CS) has been assessed through many different tests, the relationships among them are currently unknown. The main objective was to analyze the relationship between 5 representative tests used to assess CS in: (1) laboratory settings: Sudden Loading Test (SLT) and Stable and Unstable Sitting Test (SUST) and (2) field settings: Biering-Sørensen Test (BST), 3-Plane Core Strength Test, and Double-Leg Lowering Test. The reliability of these tests was also examined. In total, 33 recreationally active males performed the tests twice. The relationship between all variables was examined using Pearson correlation coefficient in those variables with a good reliability. Only stiffness and angular displacement in the SLT, dynamic unstable tasks in the SUST, and the holding time in the BST showed good reliability (intraclass correlation coefficient: .63–.91, typical error: 9.8%–21.0%). Few and low correlations were observed between the SLT, SUST, and BST. Despite finding several significant correlations among the dynamic unstable tasks of the SUST (r ≥ .807, P < .01), no correlations were found between the loading directions of the SLT. The absence of correlations between these tests suggests that CS measurements are not generalizable, as they probably assess different dimensions of CS, or in the case of the BST, a different capacity (ie, trunk extensor endurance).

The authors are with the Department of Sport Science, Sport Research Centre, Miguel Hernández University of Elche, Elche, Spain.

Barbado (dbarbado@goumh.umh.es) is corresponding author.
  • 1.

    Borghuis J, Hof AL, Lemmink KA. The importance of sensory-motor control in providing core stability: implications for measurement and training. Sports Med. 2008;38(11):893–916. PubMed ID: 18937521 doi:10.2165/00007256-200838110-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Kibler WB, Press J, Sciascia A. The role of core stability in athletic function. Sports Med. 2006;36(3):189–198. PubMed ID: 16526831 doi:10.2165/00007256-200636030-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Vera-García FJ, Barbado D, Moreno-Pérez V, Hernández-Sánchez S, Juan-Recio C, Elvira JLL. Core stability. Concepto y aportaciones al entrenamiento y la prevención de lesiones. Rev Andal Med Deport. 2015;8(2):79–85. doi:10.1016/j.ramd.2014.02.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Zazulak B, Cholewicki J, Reeves NP. Neuromuscular control of trunk stability: clinical implications for sports injury prevention. J Am Acad Orthop Surg. 2008;16(9):497–505. PubMed ID: 18768707 doi:10.5435/00124635-200809000-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Reeves NP, Narendra KS, Cholewicki J. Spine stability: the six blind men and the elephant. Clin Biomech. 2007;22(3):266–274. doi:10.1016/j.clinbiomech.2006.11.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Cholewicki J, Simons AP, Radebold A. Effects of external trunk loads on lumbar spine stability. J Biomech. 2000;33(11):1377–1385. PubMed ID: 10940396 doi:10.1016/S0021-9290(00)00118-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Vera-Garcia FJ, Brown SH, Gray JR, McGill SM. Effects of different levels of torso coactivation on trunk muscular and kinematic responses to posteriorly applied sudden loads. Clin Biomech. 2006;21(5):443–455. doi:10.1016/j.clinbiomech.2005.12.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Vera-Garcia FJ, Elvira JL, Brown SH, McGill SM. Effects of abdominal stabilization maneuvers on the control of spine motion and stability against sudden trunk perturbations. J Electromyogr Kinesiol. 2007;17(5):556–567. PubMed ID: 16996278 doi:10.1016/j.jelekin.2006.07.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Barbado D, Barbado LC, Elvira JLL, Dieën JHV, Vera-Garcia FJ. Sports-related testing protocols are required to reveal trunk stability adaptations in high-level athletes. Gait Posture. 2016;49:90–96. PubMed ID: 27395448 doi:10.1016/j.gaitpost.2016.06.027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Barbado D, Lopez-Valenciano A, Juan-Recio C, Montero-Carretero C, van Dieen JH, Vera-Garcia FJ. Trunk stability, trunk strength and sport performance level in judo. PLoS ONE. 2016;11(5):0156267. PubMed ID: 27232602 doi:10.1371/journal.pone.0156267

    • Search Google Scholar
    • Export Citation
  • 11.

    Cholewicki J, Polzhofer GK, Radebold A. Postural control of trunk during unstable sitting. J Biomech. 2000;33(12):1733–1737. PubMed ID: 11006402 doi:10.1016/S0021-9290(00)00126-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    van Dieen JH, Koppes LL, Twisk JW. Postural sway parameters in seated balancing; their reliability and relationship with balancing performance. Gait Posture. 2010;31(1):42–46. PubMed ID: 19783440 doi:10.1016/j.gaitpost.2009.08.242

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Krause DA, Youdas JW, Hollman JH, Smith J. Abdominal muscle performance as measured by the double leg-lowering test. Arch Phys Med Rehabil. 2005;86(7):1345–1348. PubMed ID: 16003662 doi:10.1016/j.apmr.2004.12.020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Stanton R, Reaburn PR, Humphries B. The effect of short-term Swiss ball training on core stability and running economy. J Strength Cond Res. 2004;18(3):522–528. PubMed ID: 15320664.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Leetun DT, Ireland ML, Willson JD, Ballantyne BT, Davis IM. Core stability measures as risk factors for lower extremity injury in athletes. Med Sci Sports Exerc. 2004;36(6):926–934. PubMed ID: 15179160 doi:10.1249/01.MSS.0000128145.75199.C3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Nesser TW, Huxel KC, Tincher JL, Okada T. The relationship between core stability and performance in division I football players. J Strength Cond Res. 2008;22(6):1750–1754. PubMed ID: 18978631 doi:10.1519/JSC.0b013e3181874564

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Chuter VH, de Jonge XAKJ, Thompson BM, Callister R. The efficacy of a supervised and a home-based core strengthening programme in adults with poor core stability: a three-arm randomised controlled trial. Br J Sports Med. 2015;49(6):395–399. PubMed ID: 25385166 doi:10.1136/bjsports-2013-093262

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Lee H, Granata KP. Process stationarity and reliability of trunk postural stability. Clin Biomech. 2008;23(6):735–742. doi:10.1016/j.clinbiomech.2008.01.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Vera-García F, Barbado D, Moreno-Pérez V, Hernández-Sánchez S, Juan-Recio C, Elvira J. Core stability: evaluación y criterios para su entrenamiento. Rev Andal Med Deport. 2015;8(3):130–137. doi:10.1016/j.ramd.2014.02.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Mills JD, Taunton JE, Mills WA. The effect of a 10-week training regimen on lumbo-pelvic stability and athletic performance in female athletes: a randomized-controlled trial. Phys Ther Sport. 2005;6(2):60–66. doi:10.1016/j.ptsp.2005.02.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Radwan A, Francis J, Green A, et al. Is there a relation between shoulder dysfunction and core instability? Int J Sports Phys Ther. 2014;9(1):8. PubMed ID: 24567850.

    • Search Google Scholar
    • Export Citation
  • 22.

    Sharrock C, Cropper J, Mostad J, Johnson M, Malone T. A pilot study of core stability and athletic performance: is there a relationship? Int J Sports Phys Ther. 2011;6(2):63–74. PubMed ID: 21713228.

    • Search Google Scholar
    • Export Citation
  • 23.

    Weir A, Darby J, Inklaar H, Koes B, Bakker E, Tol JL. Core stability: inter- and intraobserver reliability of 6 clinical tests. Clin J Sport Med. 2010;20(1):34–38. PubMed ID: 20051732 doi:10.1097/JSM.0b013e3181cae924

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Walker ML, Rothstein JM, Finucane SD, Lamb RL. Relationships between lumbar lordosis, pelvic tilt, and abdominal muscle performance. Phys Ther. 1987;67(4):512–516. PubMed ID: 2951745 doi:10.1093/ptj/67.4.512

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998;26(4):217–238. PubMed ID: 9820922 doi:10.2165/00007256-199826040-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Hopkins WG. Measures of reliability in sports medicine and science. Sports Med. 2000;30(1):1–15. PubMed ID: 10907753 doi:10.2165/00007256-200030010-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Aggarwal A, Kumar S, Madan R, Kumar R. Relationship among different tests of evaluating low back core stability. J Musculoskelet Res. 2011;14(2):1250004. doi:10.1142/S0218957712500042

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Juan-Recio C, López-Plaza D, Barbado Murillo D, García-Vaquero MP, Vera-García FJ. Reliability assessment and correlation analysis of 3 protocols to measure trunk muscle strength and endurance. J Sports Sci. 2018;36(4):357–364.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Chmielewski TL, Hodges MJ, Horodyski M, Bishop MD, Conrad BP, Tillman SM. Investigation of clinician agreement in evaluating movement quality during unilateral lower extremity functional tasks: a comparison of 2 rating methods. J Orthop Sports Phys Ther. 2007;37(3):122–129. PubMed ID: 17416127 doi:10.2519/jospt.2007.2457

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Biering-Sørensen F. Physical measurements as risk indicators for low-back trouble over a one-year period. Spine. 1984;9(2):106–119. doi:10.1097/00007632-198403000-00002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Lin D, Seol H, Nussbaum MA, Madigan ML. Reliability of COP-based postural sway measures and age-related differences. Gait Posture. 2008;28(2):337–342. PubMed ID: 18316191 doi:10.1016/j.gaitpost.2008.01.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Hopkins W, Marshall S, Batterham A, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–13. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–174. doi:10.2307/2529310

  • 34.

    Cholewicki J, McGill KC, Shah KR, Lee AS. The effects of a three-week use of lumbosacral orthoses on trunk muscle activity and on the muscular response to trunk perturbations. BMC Musculoskelet Disord. 2010;11(1):154. doi:10.1186/1471-2474-11-154

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Barbado D, Moreside J, Vera-Garcia FJ. Reliability and repetition effect of the center of pressure and kinematics parameters that characterize trunk postural control during unstable sitting test. PM R. 2017;9(3):219–230. doi:10.1016/j.pmrj.2016.08.029

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Kang KY. Effects of core muscle stability training on the weight distribution and stability of the elderly. J Phys Ther Sci. 2015;27(10):3163–3165. PubMed ID: 26644666 doi:10.1589/jpts.27.3163

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Ladeira CE, Hess LW, Galin BM, Fradera S, Harkness MA. Validation of an abdominal muscle strength test with dynamometry. J Strength Cond Res. 2005;19(4):925. PubMed ID: 16287360.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Juan-Recio C, Barbado D, López-Valenciano A, Vera-García FJ. Test de campo para valorar la resistencia de los músculos del tronco. Apunts Educación Física y Deportes. 2014;117:59–68. doi:10.5672/apunts.2014-0983.es.(2014/3).117.06

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    McGill SM, Childs A, Liebenson C. Endurance times for low back stabilization exercises: clinical targets for testing and training from a normal database. Arch Phys Med Rehabil. 1999;80(8):941–944. PubMed ID: 10453772 doi:10.1016/S0003-9993(99)90087-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Jacobs J, Horak F. Cortical control of postural responses. J Neural Transm. 2007;114(10):1339–1348. PubMed ID: 17393068 doi:10.1007/s00702-007-0657-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J. Deficits in neuromuscular control of the trunk predict knee injury risk: a prospective biomechanical-epidemiologic study. Am J Sports Med. 2007;35(7):1123–1130. PubMed ID: 17468378 doi:10.1177/0363546507301585

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Demoulin C, Vanderthommen M, Duysens C, Crielaard JM. Spinal muscle evaluation using the Sorensen test: a critical appraisal of the literature. Joint Bone Spine. 2006;73(1):43–50. PubMed ID: 16461206 doi:10.1016/j.jbspin.2004.08.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Springate SD. The effect of sample size and bias on the reliability of estimates of error: a comparative study of Dahlberg’s formula. Eur J Orthod. 2012;34(2):158–163. PubMed ID: 21447784 doi:10.1093/ejo/cjr010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 241 241 45
Full Text Views 35 35 3
PDF Downloads 13 13 4