Anthropometric Changes During Pregnancy Provide Little Explanation of Dynamic Balance Changes

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

The authors investigated the relationship between anthropometric changes and dynamic balance changes during pregnancy. A total of 15 participants were recruited for testing, using a convenience sample, from 12 weeks of gestation until childbirth. The authors measured body anthropometry with a tape measure and calipers. The authors conducted a self-selected speed walking analysis using a motion capture system and measured balance deficits as increased motion of the body center of mass. While a relatively large total explained variance of preferred walking speed was achieved (R2 = .629), this study reports that body anthropometry explains little (<1%) unique variance in walking speed (P < .001) after covariates are considered. The authors also found that body anthropometry explains little (<5%) unique variance in dynamic balance control (P < .001) after covariates are considered, but total explained variance by all variables remained low to moderate (R2 = +.248). These findings indicate that while body anthropometry changes correlate with dynamic balance changes during pregnancy, these provide little to no additional information about common balance changes during pregnancy after covariates were considered. Prepregnancy differences between individuals seem to be the predominant determinant of changes during pregnancy.

Catena, Werner, and Iverson are with the Kinesiology Program, Washington State University, Pullman, WA, USA. Campbell is with Moscow/Pullman OBGYN, Pullman, WA, USA.

Catena (robert.catena@wsu.edu) is corresponding author.
  • 1.

    National Institutes of Health (NIH). What is a high-risk pregnancy? 2017. https://www.nichd.nih.gov/health/topics/pregnancy/conditioninfo/high-risk. Accessed May 5, 2018.

    • Search Google Scholar
    • Export Citation
  • 2.

    El-Kady D, Gilbert WM, Anderson J, Danielsen B, Towner D, Smith LH. Trauma during pregnancy: an analysis of maternal and fetal outcomes in a large population. Am J Obstet Gynecol. 2004;190(6):1661–1668. PubMed ID: 15284764 doi:10.1016/j.ajog.2004.02.051

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Kuo C, Jamieson DJ, McPheeters ML, Meikle SF, Posner SF. Injury hospitalizations of pregnant women in the United States, 2002. Am J Obstet Gynecol. 2007;196(2):161.e1–161.e6. PubMed ID: 17306664 doi:10.1016/j.ajog.2006.09.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Weiss HB, Sauber-Schatz EK, Cook LJ. The epidemiology of pregnancy-associated emergency department injury visits and their impact on birth outcomes. Accid Anal Prev. 2008;40(3):1088–1095. PubMed ID: 18460377 doi:10.1016/j.aap.2007.11.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Cakmak B, Ribeiro AP, Inanir A. Postural balance and the risk of falling during pregnancy. J Matern Fetal Neonatal Med. 2016;29(10):1623–1625. PubMed ID: 26212584

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Flores D, Connolly CP, Campbell N, Catena RD. Walking balance on a treadmill changes during pregnancy. Gait Posture. 2018;66:146–150. PubMed ID: 30195216 doi:10.1016/j.gaitpost.2018.08.035

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Calguneri M, Bird HA, Wright V. Changes in joint laxity occurring during pregnancy. Ann Rheum Dis. 1982;41(2):126–128. PubMed ID: 7073339 doi:10.1136/ard.41.2.126

  • 8.

    Dumas GA, Reid JG, Wolfe LA, Griffin MP, McGrath MJ. Exercise, posture, and back pain during pregnancy. Clin Biomech. 1995;10(2):98–103. doi:10.1016/0268-0033(95)92046-O

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Buckwalter JG, Stanczyk FZ, McCleary CA, et al. Pregnancy, the postpartum, and steroid hormones: effects on cognition and mood. Psychoneuroendocrinology. 1999;24(1):69–84. PubMed ID: 10098220 doi:10.1016/S0306-4530(98)00044-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Henry JF, Sherwin BB. Hormones and cognitive functioning during late pregnancy and postpartum: a longitudinal study. Behav Neurosci. 2012;126(1):73–85. PubMed ID: 21928875 doi:10.1037/a0025540

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Marcus SM, Barry KL, Flynn HA, Tandon R, Greden JF. Treatment guidelines for depression in pregnancy. Int J Gynaecol Obstet. 2001;72(1):61–70. PubMed ID: 11146079 doi:10.1016/S0020-7292(00)00318-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Nagai M, Isida M, Saitoh J, Hirata Y, Natori H, Wada M. Characteristics of the control of standing posture during pregnancy. Neurosci Lett. 2009;462(2):130–134. PubMed ID: 19576961 doi:10.1016/j.neulet.2009.06.091

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    O’Hara MW. Social support, life events, and depression during pregnancy and the puerperium. Arch Gen Psychiatry. 1986;43(6):569–573. doi:10.1001/archpsyc.1986.01800060063008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Crawley RA, Dennison K, Carter C. Cognition in pregnancy and the first year post-partum. Psychol Psychother. 2003;76(pt 1):69–84. PubMed ID: 12689436 doi:10.1348/14760830260569265

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Atay E, Basalan Iz F. Investigation of the effect of changes in muscle strength in gestational age upon fear of falling and quality of life. Turk J Med Sci. 2015;45(4):977–983. doi:10.3906/sag-1404-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    McCrory JL, Chambers AJ, Daftary A, Redfern MS. Dynamic postural stability during advancing pregnancy. J Biomech. 2010;43(12):2434–2439. PubMed ID: 20537334 doi:10.1016/j.jbiomech.2009.09.058

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Wang TW, Apgar BS. Exercise during pregnancy. Am Fam Physician. 1998;57(8):1846–1852. PubMed ID: 9575323

  • 18.

    Branco M, Santos-Rocha R, Vieira F, Silva MR, Aguiar L, Veloso AP. Influence of body composition on gait kinetics throughout pregnancy and postpartum period. Scientifica. 2016;2016:3921536.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Krkeljas Z. Changes in gait and posture as factors of dynamic stability during walking in pregnancy. Hum Mov Sci. 2018;58:315–320. PubMed ID: 29254847 doi:10.1016/j.humov.2017.12.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Catena RD, Connolly CP, McGeorge KM, Campbell N. A comparison of methods to determine center of mass during pregnancy. J Biomech. 2018;71:217–224. PubMed ID: 29463385 doi:10.1016/j.jbiomech.2018.02.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Jensen RK, Doucet S, Treitz T. Changes in segment mass and mass distribution during pregnancy. J Biomech. 1996;29(2):251–256. PubMed ID: 8849820 doi:10.1016/0021-9290(95)00042-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Widen E, Gallagher D. Body composition changes in pregnancy: measurement, predictors and outcomes. Eur J Clin Nutr. 2014;68(6):643–652. PubMed ID: 24667754 doi:10.1038/ejcn.2014.40

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Brand A, Bradley MT, Best LA, Stoica G. Accuracy of effect size estimates from published psychological experiments involving multiple trials. J Gen Psychol. 2011;138(4):281–291. PubMed ID: 24836566 doi:10.1080/00221309.2011.604365

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–191. PubMed ID: 17695343 doi:10.3758/BF03193146

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Jang J, Hsiao KT, Hsiao-Wecksler ET. Balance (perceived and actual) and preferred stance width during pregnancy. Clin Biomech. 2008;23(4):468–476. doi:10.1016/j.clinbiomech.2007.11.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Oliveira LF, Vieira TM, Macedo AR, Simpson DM, Nadal J. Postural sway changes during pregnancy: a descriptive study using stabilometry. Eur J Obstet Gynecol Reprod Biol. 2009;147(1):25–28. PubMed ID: 19640628 doi:10.1016/j.ejogrb.2009.06.027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    McCrory JL, Chambers AJ, Daftary A, Redfern MS. Dynamic postural stability in pregnant fallers and non-fallers. BJOG. 2010;117(8):954–962. PubMed ID: 20536431 doi:10.1111/j.1471-0528.2010.02589.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    McCrory JL, Chambers AJ, Daftary A, Redfern MS. The pregnant “waddle”: an evaluation of torso kinematics in pregnancy. J Biomech. 2014;47(12):2964–2968. PubMed ID: 25108664 doi:10.1016/j.jbiomech.2014.07.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Abitbol MM. Growth of the fetus in the abdominal cavity. Am J Phys Anthropol. 1993;91(3):367–378. PubMed ID: 8333491 doi:10.1002/ajpa.1330910309

  • 30.

    Ochsenbein-Kolble N, Roos M, Gasser T, Zimmermann R. Cross-sectional study of weight gain and increase in BMI throughout pregnancy. Eur J Obstet Gynecol Reprod Biol. 2007;130(2):180–186. PubMed ID: 16698166 doi:10.1016/j.ejogrb.2006.03.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Cieslinska-Swider J, Furmanek MP, Blaszczyk JW. The influence of adipose tissue location on postural control. J Biomech. 2017;60:162–169. PubMed ID: 28705486 doi:10.1016/j.jbiomech.2017.06.027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Hita-Contreras F, Martinez-Amat A, Lomas-Vega R, et al. Relationship of body mass index and body fat distribution with postural balance and risk of falls in Spanish postmenopausal women. Menopause. 2013;20(2):202–208. PubMed ID: 22968253

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Catena RD, van Donkelaar P, Halterman CI, Chou LS. Spatial orientation of attention and obstacle avoidance following concussion. Exp Brain Res. 2009;194(1):67–77. PubMed ID: 19082819 doi:10.1007/s00221-008-1669-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Maki BE, McIlroy WE. Postural control in the older adult. Clin Geriatr Med. 1996;12(4):635–658. PubMed ID: 8890108 doi:10.1016/S0749-0690(18)30193-9

  • 35.

    Dunning K, Lemasters G, Bhattacharya A. A major public health issue: the high incidence of falls during pregnancy. Matern Child Health J. 2010;14(5):720–725. PubMed ID: 19672702 doi:10.1007/s10995-009-0511-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Dunning K, LeMasters G, Levin L, Bhattacharya A, Alterman T, Lordo K. Falls in workers during pregnancy: risk factors, job hazards, and high risk occupations. Am J Ind Med. 2003;44(6):664–672. PubMed ID: 14635243 doi:10.1002/ajim.10318

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 111 111 12
Full Text Views 10 10 1
PDF Downloads 6 6 1