The Roles of Sex and Physical Activity in Gait and Knee Extensor Function With Age

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Older females experience higher rates of disability than males, potentially due to sex-specific differences in gait and muscle function. The authors evaluated the effects of age and physical activity (PA) on gait mechanics and knee extensor muscle function in males and females. Three groups of 20 individuals (each 10 females) participated: young (21–35 y) and highly and less active older (55–70 y) adults. Knee extensor strength and joint mechanics during preferred speed gait were collected before and after 30 minutes of walking. Age by sex and PA by sex interactions indicated older and less active older females had lower concentric knee extensor muscle power and larger hip extension moments than males. After 30 minutes of walking, older less active adults had larger decreases in knee extensor power than their highly active older counterparts, and older adults of both sexes had decreases in ankle dorsiflexion moments while young adults did not. These results suggest that older, particularly less active, adults are susceptible to knee extensor muscle fatigue from moderate activity. For older adults, high levels of PA may be necessary to preserve gait mechanics in response to a bout of exercise. This new information may be important for targeting interventions in at-risk older adults.

Hafer is with the School of Kinesiology, University of Michigan, Ann Arbor, MI. Hafer, Miller, Kent, and Boyer are with the Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA. Boyer is with the Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA. Boyer is also with the Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, MA.

Hafer (johafer@umich.edu) is corresponding author.
  • 1.

    DeVita P, Hortobagyi T. Age causes a redistribution of joint torques and powers during gait. J Appl Physiol. 2000;88(5):1804–1811. doi:10.1152/jappl.2000.88.5.1804

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Boyer KA, Johnson RT, Banks JJ, Jewell C, Hafer JF. Systematic review and meta-analysis of gait mechanics in young and older adults. Exp Gerontol. 2017;95:63–70. PubMed ID: 28499954 doi:10.1016/j.exger.2017.05.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Lindle RS, Metter EJ, Lynch NA, et al. Age and gender comparisons of muscle strength in 654 women and men aged 20–93 yr. J Appl Physiol. 1997;83(5):1581–1587. doi:10.1152/jappl.1997.83.5.1581

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Petrella JK, Kim JS, Tuggle SC, Hall SR, Bamman MM. Age differences in knee extension power, contractile velocity, and fatigability. J Appl Physiol. 2005;98(1):211–220. doi:10.1152/japplphysiol.00294.2004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Murphy L, Schwartz TA, Helmick CG, et al. Lifetime risk of symptomatic knee osteoarthritis. Arthritis Rheum. 2008;59(9):1207–1213. PubMed ID: 18759314 doi:10.1002/art.24021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Hardy SE, Allore HG, Guo Z, Gill TM. Explaining the effect of gender on functional transitions in older persons. Gerontology. 2008;54(2):79–86. PubMed ID: 18230952 doi:10.1159/000115004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Newman AB, Brach JS. Gender gap in longevity and disability in older persons. Epidemiol Rev. 2001;23(2):343–355. PubMed ID: 12192741 doi:10.1093/oxfordjournals.epirev.a000810

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Hortobagyi T, Rider P, Gruber AH, DeVita P. Age and muscle strength mediate the age-related biomechanical plasticity of gait. Eur J Appl Physiol. 2016;116(4):805–814. PubMed ID: 26867788 doi:10.1007/s00421-015-3312-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Kuhman D, Willson J, Mizelle JC, DeVita P. The relationships between physical capacity and biomechanical plasticity in old adults during level and incline walking. J Biomech. 2018;69:90–96. PubMed ID: 29395227 doi:10.1016/j.jbiomech.2018.01.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Jozsi AC, Campbell WW, Joseph L, Davey SL, Evans WJ. Changes in power with resistance training in older and younger men and women. J Gerontol A Biol Sci Med Sci. 1999;54(11):M591–M596. PubMed ID: 10619323 doi:10.1093/gerona/54.11.M591

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Bohannon RW. Comfortable and maximum walking speed of adults aged 20–79 years: reference values and determinants. Age Ageing. 1997;26(1):15–19. PubMed ID: 9143432 doi:10.1093/ageing/26.1.15

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Sandler RB, Burdett R, Zaleskiewicz M, Sprowls-Repcheck C, Harwell M. Muscle strength as an indicator of the habitual level of physical activity. Med Sci Sports Exerc. 1991;23(12):1375–1381. PubMed ID: 1798380 doi:10.1249/00005768-199112000-00009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Danneskiold-Samsoe B, Bartels EM, Bulow PM, et al. Isokinetic and isometric muscle strength in a healthy population with special reference to age and gender. Acta Physiol. 2009;197(Suppl 673):1–68. doi:10.1111/j.1748-1716.2009.02022.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Miller MS, Bedrin NG, Callahan DM, et al. Age-related slowing of myosin actin cross-bridge kinetics is sex specific and predicts decrements in whole skeletal muscle performance in humans. J Appl Physiol. 2013;115(7):1004–1014. doi:10.1152/japplphysiol.00563.2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Caserotti P, Aagaard P, Simonsen EB, Puggaard L. Contraction-specific differences in maximal muscle power during stretch-shortening cycle movements in elderly males and females. Eur J Appl Physiol. 2001;84(3):206–212. PubMed ID: 11320637 doi:10.1007/s004210170006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Yanagawa N, Shimomitsu T, Kawanishi M, Fukunaga T, Kanehisa H. Sex difference in age-related changes in knee extensor strength and power production during a 10-times-repeated sit-to-stand task in Japanese elderly. J Physiol Anthropol. 2015;34:40. PubMed ID: 26573087 doi:10.1186/s40101-015-0072-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Sayers SP, Guralnik JM, Thombs LA, Fielding RA. Effect of leg muscle contraction velocity on functional performance in older men and women. J Am Geriatr Soc. 2005;53(3):467–471. PubMed ID: 15743291 doi:10.1111/j.1532-5415.2005.53166.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Callahan DM, Miller MS, Sweeny AP, et al. Muscle disuse alters skeletal muscle contractile function at the molecular and cellular levels in older adult humans in a sex-specific manner. J Physiol. 2014;592(Pt 20):4555–4573. doi:10.1113/jphysiol.2014.279034

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Callahan DM, Bedrin NG, Subramanian M, et al. Age-related structural alterations in human skeletal muscle fibers and mitochondria are sex specific: relationship to single-fiber function. J Appl Physiol. 2014;116(12):1582–1592. doi:10.1152/japplphysiol.01362.2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Pandy MG, Andriacchi TP. Muscle and joint function in human locomotion. Annu Rev Biomed Eng. 2010;12:401–433. PubMed ID: 20617942 doi:10.1146/annurev-bioeng-070909-105259

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Katsiaras A, Newman AB, Kriska A, et al. Skeletal muscle fatigue, strength, and quality in the elderly: the health ABC study. J Appl Physiol. 2005;99(1):210–216. doi:10.1152/japplphysiol.01276.2004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Senefeld J, Yoon T, Hunter SK. Age differences in dynamic fatigability and variability of arm and leg muscles: associations with physical function. Exp Gerontol. 2017;87(Pt A):74–83. PubMed ID: 27989926 doi:10.1016/j.exger.2016.10.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Callahan DM, Kent-Braun JA. Effect of old age on human skeletal muscle force-velocity and fatigue properties. J Appl Physiol. 2011;111(5):1345–1352. doi:10.1152/japplphysiol.00367.2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Callahan DM, Foulis SA, Kent-Braun JA. Age-related fatigue resistance in the knee extensor muscles is specific to contraction mode. Muscle Nerve. 2009;39(5):692–702. PubMed ID: 19347926 doi:10.1002/mus.21278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Kent-Braun JA, Callahan DM, Fay JL, Foulis SA, Buonaccorsi JP. Muscle weakness, fatigue, and torque variability: effects of age and mobility status. Muscle Nerve. 2014;49(2):209–217. PubMed ID: 23674266 doi:10.1002/mus.23903

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Lindstrom B, Lexell J, Gerdle B, Downham D. Skeletal muscle fatigue and endurance in young and old men and women. J Gerontol A Biol Sci Med Sci. 1997;52(1):B59–B66. PubMed ID: 9008659 doi:10.1093/gerona/52A.1.B59

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Solianik R, Kreivenaite L, Streckis V, Mickeviciene D, Skurvydas A. Effects of age and sex on fatigability and recovery from a sustained maximal isometric voluntary contraction. J Electromyogr Kinesiol. 2017;32:61–69. PubMed ID: 28040567 doi:10.1016/j.jelekin.2016.12.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Mcphee JS, Maden-Wilkinson TM, Narici MV, Jones DA, Degens H. Knee extensor fatigue resistance of young and older men and women performing sustained and brief intermittent isometric contractions. Muscle Nerve. 2014;50(3):393–400. PubMed ID: 24408784 doi:10.1002/mus.24174

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Foulis SA, Jones SL, van Emmerik RE, Kent JA. Post-fatigue recovery of power, postural control and physical function in older women. PLoS ONE. 2017;12(9):e0183483. PubMed ID: 28880935 doi:10.1371/journal.pone.0183483

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Mentiplay BF, Banky M, Clark RA, Kahn MB, Williams G. Lower limb angular velocity during walking at various speeds. Gait Posture. 2018;65:190–196. PubMed ID: 30558929 doi:10.1016/j.gaitpost.2018.06.162

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–188. PubMed ID: 18091006 doi:10.1249/mss.0b013e31815a51b3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Davis MG, Fox KR. Physical activity patterns assessed by accelerometry in older people. Eur J Appl Physiol. 2007;100(5):581–589. PubMed ID: 17063361 doi:10.1007/s00421-006-0320-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Bamman MM, Hill VJ, Adams GR, et al. Gender differences in resistance-training-induced myofiber hypertrophy among older adults. J Gerontol A Biol Sci Med Sci. 2003;58(2):B108–B116. PubMed ID: 12586847 doi:10.1093/gerona/58.2.B108

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Coggan AR, Spina RJ, King DS, et al. Skeletal muscle adaptations to endurance training in 60- to 70-yr-old men and women. J Appl Physiol. 1992;72(5):1780–1786. doi:10.1152/jappl.1992.72.5.1780

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Cho SH, Park JM, Kwon OY. Gender differences in three dimensional gait analysis data from 98 healthy Korean adults. Clin Biomech. 2004;19(2):145–152. doi:10.1016/j.clinbiomech.2003.10.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Kerrigan DC, Todd MK, Della Croce U. Gender differences in joint biomechanics during walking: normative study in young adults. Am J Phys Med Rehabil. 1998;77(1):2–7. PubMed ID: 9482373 doi:10.1097/00002060-199801000-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Kobayashi Y, Hobara H, Heldoorn TA, Kouchi M, Mochimaru M. Age-independent and age-dependent sex differences in gait pattern determined by principal component analysis. Gait Posture. 2016;46:11–17. PubMed ID: 27131170 doi:10.1016/j.gaitpost.2016.01.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Boyer KA, Beaupre GS, Andriacchi TP. Gender differences exist in the hip joint moments of healthy older walkers. J Biomech. 2008;41(16):3360–3365. PubMed ID: 19022448 doi:10.1016/j.jbiomech.2008.09.030

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Roislien J, Skare O, Gustavsen M, Broch NL, Rennie L, Opheim A. Simultaneous estimation of effects of gender, age and walking speed on kinematic gait data. Gait Posture. 2009;30(4):441–445. PubMed ID: 19665379 doi:10.1016/j.gaitpost.2009.07.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Ko SU, Tolea MI, Hausdorff JM, Ferrucci L. Sex-specific differences in gait patterns of healthy older adults: results from the Baltimore longitudinal study of aging. J Biomech. 2011;44(10):1974–1979. PubMed ID: 21601861 doi:10.1016/j.jbiomech.2011.05.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Pucci GC, Rech CR, Fermino RC, Reis RS. Association between physical activity and quality of life in adults. Rev Saude Publica. 2012;46(1):166–179. PubMed ID: 22249758 doi:10.1590/S0034-89102012000100021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Hafer JF, Kent JA, Boyer KA. Physical activity and age-related biomechanical risk factors for knee osteoarthritis. Gait Posture. 2019;70:24–29.

  • 43.

    Freedson PS, Melanson E, Sirard J. Calibration of the computer science and applications, inc. accelerometer. Med Sci Sports Exerc. 1998;30(5):777–781. PubMed ID: 9588623 doi:10.1097/00005768-199805000-00021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Andriacchi TP, Alexander EJ, Toney MK, Dyrby C, Sum J. A point cluster method for in vivo motion analysis: applied to a study of knee kinematics. J Biomech Eng. 1998;120(6):743–749. PubMed ID: 10412458 doi:10.1115/1.2834888

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Bell AL, Pederson DR, Brand RA. Prediction of hip joint center location from external landmarks. Hum Mov Sci. 1989;8(1):3–16. doi:10.1016/0167-9457(89)90020-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Kerrigan DC, Todd MK, Della Croce U, Lipsitz LA, Collins JJ. Biomechanical gait alterations independent of speed in the healthy elderly: evidence for specific limiting impairments. Arch Phys Med Rehabil. 1998;79(3):317–322. PubMed ID: 9523785 doi:10.1016/S0003-9993(98)90013-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Boyer KA, Andriacchi TP, Beaupre GS. The role of physical activity in changes in walking mechanics with age. Gait Posture. 2012;36(1):149–153. PubMed ID: 22445586 doi:10.1016/j.gaitpost.2012.02.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Franz JR. The age-associated reduction in propulsive power generation in walking. Exerc Sport Sci Rev. 2016;44(4):129–136. PubMed ID: 27433977 doi:10.1249/JES.0000000000000086

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Cofre LE, Lythgo N, Morgan D, Galea MP. Aging modifies joint power and work when gait speeds are matched. Gait Posture. 2011;33(3):484–489. PubMed ID: 21256026 doi:10.1016/j.gaitpost.2010.12.030

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Ploutz-Snyder LL, Manini T, Ploutz-Snyder RJ, Wolf DA. Functionally relevant thresholds of quadriceps femoris strength. J Gerontol A Biol Sci Med Sci. 2002;57(4):B144–B152. PubMed ID: 11909879 doi:10.1093/gerona/57.4.B144

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Rantanen T, Guralnik JM, Izmirlian G, et al. Association of muscle strength with maximum walking speed in disabled older women. Am J Phys Med Rehabil. 1998;77(4):299–305. PubMed ID: 9715919 doi:10.1097/00002060-199807000-00008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Segal NA, Glass NA, Torner J, et al. Quadriceps weakness predicts risk for knee joint space narrowing in women in the MOST cohort. Osteoarthritis Cartilage. 2010;18(6):769–775. PubMed ID: 20188686 doi:10.1016/j.joca.2010.02.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Bailey CA, Corona F, Pilloni G, et al. Sex-dependent and sex-independent muscle activation patterns in adult gait as a function of age. Exp Gerontol. 2018;110:1–8. PubMed ID: 29751090 doi:10.1016/j.exger.2018.05.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Van Criekinge T, Saeys W, Hallemans A, et al. Age-related differences in muscle activity patterns during walking in healthy individuals. J Electromyogr Kinesiol. 2018;41:124–131. PubMed ID: 29879694 doi:10.1016/j.jelekin.2018.05.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Beijersbergen CM, Granacher U, Vandervoort AA, DeVita P, Hortobagyi T. The biomechanical mechanism of how strength and power training improves walking speed in old adults remains unknown. Ageing Res Rev. 2013;12(2):618–627. PubMed ID: 23501431 doi:10.1016/j.arr.2013.03.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Garber CE, Blissmer B, Deschenes MR, et al. American college of sports medicine position stand. quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–1359. PubMed ID: 21694556 doi:10.1249/MSS.0b013e318213fefb

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 421 421 24
Full Text Views 62 62 12
PDF Downloads 29 29 5