Effect of Single-Leg Squat Speed and Depth on Dynamic Postural Control Under Single-Task and Dual-Task Paradigms

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

Although single-leg squats are a common dynamic balance clinical assessment, little is known about the relationship between parameters that influence squat movement and postural control performance. The objective of this study was to determine the relationships between squat parameters (speed and depth) and postural control under single task and dual task. A total of 30 healthy college students performed single-leg squats under single task and dual task with Stroop. Random-intercepts generalized linear mixed models determined the effect of squat parameters on center of pressure (CoP) parameters. For each 1-cm·s−1 increase in squat speed, sway range (mediolateral: β = −0.03; anteroposterior: β = −0.05) and area (β = −0.25) decreased, whereas sway speed (mediolateral: β = 0.05; anteroposterior: β = 0.29; total: β = 0.29) increased. For each 1-cm increase in squat depth, sway range (mediolateral: β = 0.05; anteroposterior: β = 0.20) and area (β = 0.72) increased, whereas sway speed (anteroposterior: β = −0.14; total: β = −0.14) decreased. Compared with single task, the association between total and anteroposterior sway speed and squat speed was stronger under dual task. Clinicians and researchers should consider monitoring squat speed and depth when assessing dynamic balance during single-leg squats, as these parameters influence postural control, especially under dual task.

Talarico is with the Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA. Lynall is with the Department of Kinesiology, University of Georgia, Athens, GA, USA. Mauntel is with the Department of Orthopaedics, Walter Reed National Military Medical Center, Bethesda, MD, USA. Wasserman is with the Datalys Center for Sports Injury Research and Prevention, Inc., Indianapolis, IN, USA. Padua and Mihalik are with the Department of Exercise and Sport Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. Talarico is also with Jameson Crane Sports Medicine Institute, The Ohio State University, Columbus, OH, USA.

Talarico (talarico.7@buckeyemail.osu.edu) is corresponding author.
Journal of Applied Biomechanics
Article Sections
References
  • 1.

    Claiborne TLArmstrong CWGandhi VPincivero DM. Relationship between hip and knee strength and knee valgus during a single leg squat. J Appl Biomech. 2006;22:4150. PubMed ID: 16760566 doi:10.1123/jab.22.1.41

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Crossley KMZhang WJSchache AGBryant ACowan SM. Performance on the single-leg squat task indicates hip abductor muscle function. Am J Sports Med. 2011;39:866873. PubMed ID: 21335344 doi:10.1177/0363546510395456

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Zeller BLMcCrory JLKibler WBUhl TL. Differences in kinematics and electromyographic activity between men and women during the single-legged squat. Am J Sports Med. 2003;31:449456. PubMed ID: 12750142 doi:10.1177/03635465030310032101

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Kivlan BRMartin RL. Functional performance testing of the hip in athletes: a systematic review for reliability and validity. Int J Sports Phys Ther. 2012;7:402412. PubMed ID: 22893860

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Weeks BKCarty CPHoran SA. Kinematic predictors of single-leg squat performance: a comparison of experienced physiotherapists and student physiotherapists. BMC Musculoskelet Disord. 2012;13:207. PubMed ID: 23098061 doi:10.1186/1471-2474-13-207

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Whatman CHume PHing W. Kinematics during lower extremity functional screening tests in young athletes—are they reliable and valid? Phys Ther Sport. 2013;14:8793. PubMed ID: 23088924 doi:10.1016/j.ptsp.2012.06.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Plisky PJRauh MJKaminski TWUnderwood FB. Star Excursion Balance Test as a predictor of lower extremity injury in high school basketball players. J Orthop Sports Phys Ther. 2006;36:911919. PubMed ID: 17193868 doi:10.2519/jospt.2006.2244

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Butler RJLehr MEFink MLKiesel KBPlisky PJ. Dynamic balance performance and noncontact lower extremity injury in college football players: an initial study. Sports Health. 2013;5:417422. PubMed ID: 24427412 doi:10.1177/1941738113498703

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Willson JDIreland MLDavis I. Core strength and lower extremity alignment during single leg squats. Med Sci Sports Exerc. 2006;38:945952. PubMed ID: 16672849 doi:10.1249/01.mss.0000218140.05074.fa

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    DiMattia MALivengood ALUhl TLMattacola CGMalone TR. What are the validity of the single-leg-squat test and its relationship to hip-abduction strength. J Sports Rehabil. 2005;14:108123. doi:10.1123/jsr.14.2.108

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Mauntel TCFrank BSBegalle RLBlackburn JTPadua DA. Kinematic differences between those with and without medial knee displacement during a single-leg squat. J Appl Biomech. 2014;30:707712. PubMed ID: 25009951 doi:10.1123/jab.2014-0003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Cortes NOnate JAbrantes JGagen LDowling EVan Lunen B. Effects of gender and foot-landing techniques on lower extremity kinematics during drop-jump landings. J Appl Biomech. 2007;23:289299. PubMed ID: 18089927 doi:10.1123/jab.23.4.289

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Culvenor AGAlexander BCClark RAet al. Dynamic single-leg postural control is impaired bilaterally following anterior cruciate ligament reconstruction: implications for reinjury risk. J Orthop Sports Phys Ther. 2016;46:357364. PubMed ID: 26999412 doi:10.2519/jospt.2016.6305

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hatton ALKemp JLBrauer SGClark RACrossley KM. Impairment of dynamic single-leg balance performance in individuals with hip chondropathy. Arthritis Care Res. 2014;66:709716. doi:10.1002/acr.22193

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Beutler AICooper LWKirkendall DTGarrett WE Jr. Electromyographic analysis of single-leg, closed chain exercises: implications for rehabilitation after anterior cruciate ligament reconstruction. J Athl Train. 2002;37:1318. PubMed ID: 12937438

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Alenezi FHerrington LJones PJones R. The reliability of biomechanical variables collected during single leg squat and landing tasks. J Electromyogr Kinesiol. 2014;24:718721. PubMed ID: 25128206 doi:10.1016/j.jelekin.2014.07.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Severin ACBurkett BJMcKean MRWiegand ANSayers MGL. Quantifying kinematic differences between land and water during squats, split squats, and single-leg squats in a healthy population. PLoS ONE. 2017;12:e0182320. PubMed ID: 28767683 doi:10.1371/journal.pone.0182320

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Willy RWDavis IS. The effect of a hip-strengthening program on mechanics during running and during a single-leg squat. J Orthop Sports Phys Ther. 2011;41:625632. PubMed ID: 21765220 doi:10.2519/jospt.2011.3470

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Nakagawa THMoriya ETMaciel CDSerrão FV. Trunk, pelvis, hip, and knee kinematics, hip strength, and gluteal muscle activation during a single-leg squat in males and females with and without patellofemoral pain syndrome. J Orthop Sports Phys Ther. 2012;42:491501. PubMed ID: 22402604 doi:10.2519/jospt.2012.3987

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Chmielewski TLHodges MJHorodyski MBishop MDConrad BPTillman SM. Investigation of clinician agreement in evaluating movement quality during unilateral lower extremity functional tasks: a comparison of 2 rating methods. J Orthop Sports Phys Ther. 2007;37:122129. PubMed ID: 17416127 doi:10.2519/jospt.2007.2457

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Friedrich JBrakke RAkuthota VSullivan W. Reliability and practicality of the core score: four dynamic core stability tests performed in a physician office setting. Clin J Sport Med. 2017;27:409414. PubMed ID: 28653966 doi:10.1097/JSM.0000000000000366

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Graci VSalsich GB. Trunk and lower extremity segment kinematics and their relationship to pain following movement instruction during a single-leg squat in females with dynamic knee valgus and patellofemoral pain. J Sci Med Sport. 2015;18:343347. PubMed ID: 24836048 doi:10.1016/j.jsams.2014.04.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Willson JDDavis IS. Lower extremity mechanics of females with and without patellofemoral pain across activities with progressively greater task demands. Clin Biomech. 2008;23:203211. doi:10.1016/j.clinbiomech.2007.08.025

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Herrington L. Knee valgus angle during single leg squat and landing in patellofemoral pain patients and controls. Knee. 2014;21:514517. PubMed ID: 24380805. doi:10.1016/j.knee.2013.11.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Shubert TE. Evidence-based exercise prescription for balance and falls prevention: a current review of the literature. J Geriatr Phys Ther. 2011;34:100108. PubMed ID: 22267151 doi:10.1519/JPT.0b013e31822938ac

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Mendel TBarbosa WSasaki A. Dual task training as a therapeutic strategy in neurologic physical therapy: a literature review. Acta Fisiatr. 2015;22:206211.

    • Search Google Scholar
    • Export Citation
  • 27.

    McCulloch K. Attention and dual-task conditions: physical therapy implications for individuals with acquired brain injury. J Neurol Phys Ther. 2007;31:104118. PubMed ID: 18025956 doi:10.1097/NPT.0b013e31814a6493

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Broglio SPTomporowski PDFerrara MS. Balance performance with a cognitive task: a dual-task testing paradigm. Med Sci Sports Exerc. 2005;37:689695. PubMed ID: 15809571 doi:10.1249/01.MSS.0000159019.14919.09

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Rogers MEFernandez JEBohlken RM. Training to reduce postural sway and increase functional reach in the elderly. J Occup Rehabil. 2001;11:291298. PubMed ID: 11826729 doi:10.1023/A:1013300725964

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Lee HSullivan SJSchneiders AG. The use of the dual-task paradigm in detecting gait performance deficits following a sports-related concussion: a systematic review and meta-analysis. J Sci Med Sport. 2013;16:27. PubMed ID: 22609052 doi:10.1016/j.jsams.2012.03.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Ingriselli JMRegister-Mihalik JKSchmidt JDMihalik JPGoerger BMGuskiewicz KM. Outcomes, utility, and feasibility of single task and dual task intervention programs: preliminary implications for post-concussion rehabilitation. J Sci Med Sport. 2014;17(6):580585.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Brauer SGBroome AStone CClewett SHerzig P. Simplest tasks have greatest dual task interference with balance in brain injured adults. Hum Mov Sci. 2004;23:489502. PubMed ID: 15541531 doi:10.1016/j.humov.2004.08.020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Register-Mihalik JKLittleton ACGuskiewicz KM. Are divided attention tasks useful in the assessment and management of sport-related concussion? Neuropsychol Rev. 2013;23(4):300313. PubMed ID: 24242888 doi:10.1007/s11065-013-9238-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Talarico MKLynall RCMauntel TCWeinhold PSPadua DAMihalik JP. Static and dynamic single leg postural control performance during dual-task paradigms. J Sports Sci. 2017:35(11):11181124. PubMed ID: 27498815 doi:10.1080/02640414.2016.1211307

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Mauntel TCBegalle RLCram TRet al. The effects of lower extremity muscle activation and passive range of motion on single leg squat performance. J Strength Cond Res. 2013;27:18131823. PubMed ID: 23096063 doi:10.1519/JSC.0b013e318276b886

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Stroop JR. Studies of interference in serial verbal reactions. J Exp Psychol Gen. 1935;18:643662. doi:10.1037/h0054651

  • 37.

    Chiu MCWu HCChang LY. Gait speed and gender effects on center of pressure progression during normal walking. Gait Posture. 2013;37:4348. PubMed ID: 22824680 doi:10.1016/j.gaitpost.2012.05.030

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Keijsers NLStolwijk NMRenzenbrink GJDuysens J. Prediction of walking speed using single stance force or pressure measurements in healthy subjects. Gait Posture. 2016;43:9395. PubMed ID: 26669958 doi:10.1016/j.gaitpost.2015.09.027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Thomas KSVanLunen BLMorrison S. Changes in postural sway as a function of prolonged walking. Eur J Appl Physiol. 2013;113:497508. PubMed ID: 22806086 doi:10.1007/s00421-012-2456-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Chung MJWang MJ. The change of gait parameters during walking at different percentage of preferred walking speed for healthy adults aged 20–60 years. Gait Posture. 2010;31:131135. PubMed ID: 19939681 doi:10.1016/j.gaitpost.2009.09.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Dubbeldam RBuurke JHSimons Cet al. The effects of walking speed on forefoot, hindfoot and ankle joint motion. Clin Biomech. 2010;25:796801. PubMed ID: 20619515 doi:10.1016/j.clinbiomech.2010.06.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Newell KM. On task and theory specificity. J Mot Behav. 1989;21:9296. PubMed ID: 15117675 doi:10.1080/00222895.1989.10735467

  • 43.

    Dionisio VCAlmeida GLDuarte MHirata RP. Kinematic, kinetic and EMG patterns during downward squatting. J Electromyogr Kinesiol. 2008;18:134143. PubMed ID: 17029862 doi:10.1016/j.jelekin.2006.07.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Keith TRCondon TAPhillips AMcKeon POKing DL. Postural control strategies are dependent on reach direction in the Star Excursion Balance Test. Int J Athl Ther Train. 2016;21:3339. doi:10.1123/ijatt.2016-0004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Gribble PAHertel JPlisky P. Using the Star Excursion Balance Test to assess dynamic postural-control deficits and outcomes in lower extremity injury: a literature and systematic review. J Athl Train. 2012;47:339357. PubMed ID: 22892416 doi:10.4085/1062-6050-47.3.08

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Earl JEHertel J. Lower-extremity muscle activation during the Star Excursion Balance Tests. J Sport Rehabil. 2001;10:93104.

  • 47.

    Parker TMOsternig LRvan Donkelaar PChou LS. Balance control during gait in athletes and non-athletes following concussion. Med Eng Phys. 2008;30:959967. PubMed ID: 18243036 doi:10.1016/j.medengphy.2007.12.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Resch JEMay BTomporowski PDFerrara MS. Balance performance with a cognitive task: a continuation of the dual-task testing paradigm. J Athl Train. 2011;46:170175. PubMed ID: 21391802 doi:10.4085/1062-6050-46.2.170

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Strubhar AJRapp BThomas D. Changes in gait and texting ability during progressively difficult gait tasks. Int J Exerc Sci. 2017;10:743753. PubMed ID: 28966712

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Patel PLamar MBhatt T. Effect of type of cognitive task and walking speed on cognitive-motor interference during dual-task walking. Neuroscience. 2014;260:140148.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Catena RDvan Donkelaar PChou LS. Altered balance control following concussion is better detected with an attention test during gait. Gait Posture. 2007;25:406411. PubMed ID: 16787746 doi:10.1016/j.gaitpost.2006.05.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Howell DROsternig LRChou LS. Dual-task effect on gait balance control in adolescents with concussion. Arch Phys Med Rehabil. 2013;94:15131520. PubMed ID: 23643687 doi:10.1016/j.apmr.2013.04.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Catena RDvan Donkelaar PChou LS. Cognitive task effects on gait stability following concussion. Exp Brain Res. 2007;176:2331. PubMed ID: 16826411 doi:10.1007/s00221-006-0596-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Parker TMOsternig LRVan Donkelaar PChou LS. Gait stability following concussion. Med Sci Sports Exerc. 2006;38:10321040. PubMed ID: 16775541 doi:10.1249/01.mss.0000222828.56982.a4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Parker TMOsternig LRLee HJDonkelaar PvChou LS. The effect of divided attention on gait stability following concussion. Clin Biomech. 2005;20:389395. PubMed ID: 15737446 doi:10.1016/j.clinbiomech.2004.12.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Bergamin MGobbo SZanotto Tet al. Influence of age on postural sway during different dual-task conditions. Front Aging Neurosci. 2014;6:271. PubMed ID: 25374539 doi:10.3389/fnagi.2014.00271

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Ross SEGuskiewicz KMGross MTYu B. Balance measures for discriminating between functionally unstable and stable ankles. Med Sci Sports Exerc. 2009;41:399407. PubMed ID: 19127184 doi:10.1249/MSS.0b013e3181872d89

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Polskaia NRicher NDionne ELajoie Y. Continuous cognitive task promotes greater postural stability than an internal or external focus of attention. Gait Posture. 2015;41:454458. PubMed ID: 25554460 doi:10.1016/j.gaitpost.2014.11.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Kennedy MDBurrows LParent E. Intrarater and interrater reliability of the single-leg squat test. Athl Ther Today. 2010;15:3236.

  • 60.

    Stensrud SMyklebust GKristianslund EBahr RKrosshaug T. Correlation between two-dimensional video analysis and subjective assessment in evaluating knee control among elite female team handball players. Br J Sports Med. 2011;45:589595. PubMed ID: 21148569 doi:10.1136/bjsm.2010.078287

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 126 126 73
Full Text Views 17 17 11
PDF Downloads 8 8 4
Altmetric Badge
PubMed
Google Scholar