Does Decreasing Below-Knee Prosthesis Pylon Longitudinal Stiffness Increase Prosthetic Limb Collision and Push-Off Work During Gait?

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Investigations have begun to connect leg prosthesis mechanical properties and user outcomes to optimize prosthesis designs for maximizing mobility. To date, parametric studies have focused on prosthetic foot properties, but not explicitly longitudinal stiffness that is uniquely modified through shock-absorbing pylons. The linear spring function of these devices might affect work performed on the body center of mass during walking. This study observed the effects of different levels of pylon stiffness on individual limb work of unilateral below-knee prosthesis users walking at customary and fast speeds. Longitudinal stiffness reductions were associated with minimal increase in prosthetic limb collision and push-off work, but inconsistent changes in sound limb work. These small and variable changes in limb work did not suggest an improvement in mechanical economy due to reductions in stiffness. Fast walking generated greater overall center of mass work demands across stiffness conditions. Results indicate limb work asymmetry as the prosthetic limb experienced on average 61% and 36% of collision and push-off work, respectively, relative to the sound limb. A series-spring model to estimate residuum and pylon stiffness effects on prosthesis energy storage suggested that minimal changes to limb work may be due to influences of the residual limb which dominate the system response.

Major, Zavaleta, and Gard are with the Northwestern University Department of Physical Medicine and Rehabilitation, Chicago, IL, USA. Major and Gard are also with Jesse Brown VA Medical Center, Chicago, IL, USA.

Major (matthew-major@northwestern.edu) is corresponding author.
  • 1.

    Boutwell E, Stine R, Gard S. Shock absorption during transtibial amputee gait: does longitudinal prosthetic stiffness play a role? Prosthet Orthot Int. 2017;41(2):178–185. PubMed ID: 27117010 doi:10.1177/0309364616640945

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Boutwell E, Stine R, Gard S. Impact testing of the residual limb: system response to changes in prosthetic stiffness. J Rehabil Res Dev. 2016;53(3):369–378. PubMed ID: 27272982 doi:10.1682/JRRD.2014.10.0234

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Klodd E, Hansen A, Fatone S, Edwards M. Effects of prosthetic foot forefoot flexibility on oxygen cost and subjective preference rankings of unilateral transtibial prosthesis users. J Rehabil Res Dev. 2010;47(6):543–552. PubMed ID: 20848367 doi:10.1682/JRRD.2010.01.0003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Klodd E, Hansen A, Fatone S, Edwards M. Effects of prosthetic foot forefoot flexibility on gait of unilateral transtibial prosthesis users. J Rehabil Res Dev. 2010;47(9):899–910. PubMed ID: 21174254 doi:10.1682/JRRD.2009.10.0166

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Fey NP, Klute GK, Neptune RR. The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees. Clin Biomech. 2011;26(10):1025–1032. PubMed ID: 21777999 doi:10.1016/j.clinbiomech.2011.06.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Ventura JD, Klute GK, Neptune RR. The effects of prosthetic ankle dorsiflexion and energy return on below-knee amputee leg loading. Clin Biomech. 2011;26(3):298–303. PubMed ID: 21093131 doi:10.1016/j.clinbiomech.2010.10.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Ventura JD, Klute GK, Neptune RR. The effect of prosthetic ankle energy storage and return properties on muscle activity in below-knee amputee walking. Gait Posture. 2011;33(2):220–226. PubMed ID: 21145747 doi:10.1016/j.gaitpost.2010.11.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Zelik KE, Collins SH, Adamczyk PG, et al. Systematic variation of prosthetic foot spring affects center-of-mass mechanics and metabolic cost during walking. IEEE Trans Neural Syst Rehabil Eng. 2011;19(4):411–419. PubMed ID: 21708509 doi:10.1109/TNSRE.2011.2159018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Hansen AH, Meier MR, Sessoms PH, Childress DS. The effects of prosthetic foot roll-over shape arc length on the gait of trans-tibial prosthesis users. Prosthet Orthot Int. 2006;30(3):286–299. PubMed ID: 17162519 doi:10.1080/03093640600816982

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Major MJ, Twiste M, Kenney LP, Howard D. The effects of prosthetic ankle stiffness on stability of trans-tibial amputee gait. J Rehabil Res Dev. 2016;53(6):839–852. PubMed ID: 28273321 doi:10.1682/JRRD.2015.08.0148

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Major MJ, Twiste M, Kenney LP, Howard D. The effects of prosthetic ankle stiffness on ankle and knee kinematics, prosthetic limb loading, and net metabolic cost of trans-tibial amputee gait. Clin Biomech. 2014;29(1):98–104. PubMed ID: 24238976 doi:10.1016/j.clinbiomech.2013.10.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Zmitrewicz RJ, Neptune RR, Sasaki K. Mechanical energetic contributions from individual muscles and elastic prosthetic feet during symmetric unilateral transtibial amputee walking: a theoretical study. J Biomech. 2007;40(8):1824–1831. PubMed ID: 17045595 doi:10.1016/j.jbiomech.2006.07.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Srinivasan S, Westervelt ER, Hansen AH. A low-dimensional sagittal-plane forward-dynamic model for asymmetric gait and its application to study the gait of transtibial prosthesis users. J Biomech Eng. 2009;131(3):031003. PubMed ID: 19154062 doi:10.1115/1.3002757

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Fey NP, Klute GK, Neptune RR. Altering prosthetic foot stiffness influences foot and muscle function during below-knee amputee walking: a modeling and simulation analysis. J Biomech. 2013;46(4):637–644. PubMed ID: 23312827 doi:10.1016/j.jbiomech.2012.11.051

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Fey NP, Klute GK, Neptune RR. Optimization of prosthetic foot stiffness to reduce metabolic cost and intact knee loading during below-knee amputee walking: a theoretical study. J Biomech Eng. 2012;134(11):111005. PubMed ID: 23387787 doi:10.1115/1.4007824

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Strbac M, Popovic DB. Software tool for the prosthetic foot modeling and stiffness optimization. Comput Math Methods Med. 2012;2012:421796. PubMed ID: 22536296 doi:10.1155/2012/421796

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Silverman AK, Neptune RR. Muscle and prosthesis contributions to amputee walking mechanics: a modeling study. J Biomech. 2012;45(13):2271–2278. PubMed ID: 22840757 doi:10.1016/j.jbiomech.2012.06.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    van den Bogert AJ, Samorezov S, Davis BL, Smith WA. Modeling and optimal control of an energy-storing prosthetic knee. J Biomech Eng. 2012;134(5):051007. PubMed ID: 22757495 doi:10.1115/1.4006680

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Jin L, Adamczyk PG, Roland M, Hahn ME. The effect of high- and low-damping prosthetic foot structures on knee loading in the uninvolved limb across different walking speeds. J Appl Biomech. 2016;32(3):233–240. PubMed ID: 26671831 doi:10.1123/jab.2015-0143

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Major MJ, Fey NP. Considering passive mechanical properties and patient user motor performance in lower limb prosthesis design optimization to enhance rehabilitation outcomes. Phys Ther Rev. 2017;22(3-4):202–216. doi:10.1080/10833196.2017.1346033

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    van der Linde H, Hofstad CJ, Geurts AC, Postema K, Geertzen JH, van Limbeek J. A systematic literature review of the effect of different prosthetic components on human functioning with a lower-limb prosthesis. J Rehabil Res Dev. 2004;41(4):555–570. PubMed ID: 15558384 doi:10.1682/JRRD.2003.06.0102

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Major MJ, Kenney LP, Twiste M, Howard D. Stance phase mechanical characterization of trans-tibial prostheses distal to the socket: a review. J Rehabil Res Dev. 2012;49(6):815–829. PubMed ID: 23299254 doi:10.1682/JRRD.2011.06.0108

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Berge JS, Klute GK, Czerniecki JM. Mechanical properties of shock-absorbing pylons used in transtibial prostheses. J Biomech Eng. 2004;126(1):120–122. PubMed ID: 15171138 doi:10.1115/1.1645865

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Gard SA, Konz RJ. The effect of a shock-absorbing pylon on the gait of persons with unilateral transtibial amputation. J Rehabil Res Dev. 2003;40(2):109–124. PubMed ID: 15077637 doi:10.1682/JRRD.2003.03.0109

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Berge JS, Czerniecki JM, Klute GK. Efficacy of shock-absorbing versus rigid pylons for impact reduction in transtibial amputees based on laboratory, field, and outcome metrics. J Rehabil Res Dev. 2005;42(6):795–808. PubMed ID: 16680617 doi:10.1682/JRRD.2005.02.0034

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Adderson JA, Parker KE, Macleod DA, Kirby RL, McPhail C. Effect of a shock-absorbing pylon on transmission of heel strike forces during the gait of people with unilateral trans-tibial amputations: a pilot study. Prosthet Orthot Int. 2007;31(4):384–393. PubMed ID: 18050009 doi:10.1080/03093640701254018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Buckley JG, Jones SF, Birch KM. Oxygen consumption during ambulation: comparison of using a prosthesis fitted with and without a tele-torsion device. Arch Phys Med Rehabil. 2002;83(4):576–580. PubMed ID: 11932866 doi:10.1053/apmr.2002.30624

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Adamczyk PG, Kuo AD. Mechanisms of gait asymmetry due to push-off deficiency in unilateral amputees. IEEE Trans Neural Syst Rehabil Eng. 2015;23(5):776–785. PubMed ID: 25222950 doi:10.1109/TNSRE.2014.2356722

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Donelan JM, Kram R, Kuo AD. Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking. J Exp Biol. 2002;205(Pt. 23):3717–3727. PubMed ID: 12409498

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Houdijk H, Pollmann E, Groenewold M, Wiggerts H, Polomski W. The energy cost for the step-to-step transition in amputee walking. Gait Posture. 2009;30(1):35–40. PubMed ID: 19321343 doi:10.1016/j.gaitpost.2009.02.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Adamczyk PG, Kuo AD. Redirection of center-of-mass velocity during the step-to-step transition of human walking. J Exp Biol. 2009;212(Pt 16):2668–2678. PubMed ID: 19648412 doi:10.1242/jeb.027581

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    van Jaarsveld HW, Grootenboer HJ, de Vries J, Koopman HF. Stiffness and hysteresis properties of some prosthetic feet. Prosthet Orthot Int. 1990;14(3):117–124. PubMed ID: 2095529

    • Search Google Scholar
    • Export Citation
  • 33.

    Curtze C, Hof AL, van Keeken HG, Halbertsma JP, Postema K, Otten B. Comparative roll-over analysis of prosthetic feet. J Biomech Eng. 2009;42(11):1746–1753. PubMed ID: 19446814 doi:10.1016/j.jbiomech.2009.04.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Klute GK, Berge JS, Segal AD. Heel-region properties of prosthetic feet and shoes. J Rehabil Res Dev. 2004;41(4):535–546. PubMed ID: 15558382 doi:10.1682/JRRD.2003.02.0025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Major MJ, Scham J, Orendurff MS. The effects of common footwear on stance-phase mechanical properties of the prosthetic foot-shoe system. Prosthet Orthot Int. 2017;42(2):198–207. PubMed ID: 28486847 doi:10.1177/0309364617706749

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Boutwell E. The Effect of Systematic Variation in Transtibial Prosthesis Stiffness on Impact Loading Mechanics [PhD Thesis]. Evanston, IL: Northwestern University; 2014.

    • Search Google Scholar
    • Export Citation
  • 37.

    Kadaba MP, Ramakrishnan HK, Wootten ME. Measurement of lower extremity kinematics during level walking. J Orthop Res. 1990;8(3):383–392. PubMed ID: 2324857 doi:10.1002/jor.1100080310

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Donelan JM, Kram R, Kuo AD. Simultaneous positive and negative external mechanical work in human walking. J Biomech Eng. 2002;35(1):117–124. PubMed ID: 11747890 doi:10.1016/S0021-9290(01)00169-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Perry J, Burnfield J. Gait Analysis: Normal and Pathological Function. 2nd ed. Thorofare, NJ: Slack Incorporated; 2010.

  • 40.

    Klute GK, Berge JS. Modelling the effect of prosthetic feet and shoes on the heel-ground contact force in amputee gait. Proc Inst Mech Eng H. 2004;218(3):173–182. PubMed ID: 15239568 doi:10.1243/095441104323118897

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Kuo AD, Donelan JM. Dynamic principles of gait and their clinical implications. Phys Ther. 2010;90(2):157–174. PubMed ID: 20023002 doi:10.2522/ptj.20090125

  • 42.

    Kuo AD, Donelan JM, Ruina A. Energetic consequences of walking like an inverted pendulum: step-to-step transitions. Exerc Sport Sci Rev. 2005;33(2):88–97. PubMed ID: 15821430 doi:10.1097/00003677-200504000-00006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Klute GK, Berge JS, Orendurff MS, Williams RM, Czerniecki JM. Prosthetic intervention effects on activity of lower-extremity amputees. Arch Phys Med Rehabil. 2006;87(5):717–722. PubMed ID: 16635636 doi:10.1016/j.apmr.2006.02.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Papaioannou G, Mitrogiannis C, Nianios G, Fiedler G. Assessment of internal and external prosthesis kinematics during strenuous activities using dynamic roentgen stereophotogrammetric analysis. J Prosthet Orthot. 2010;22(2):91–105. doi:10.1097/JPO.0b013e3181cca7bb

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Tanner JE, Berke GM. Radiographic comparison of vertical tibial translation using two types of suspensions on a transtibial prosthesis: a case study. J Prosthet Orthot. 2001;13(1):14–16. doi:10.1097/00008526-200103000-00012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Dickinson AS, Steer JW, Worsley PR. Finite element analysis of the amputated lower limb: a systematic review and recommendations. Med Eng Phys. 2017;43:1–18. PubMed ID: 28285881 doi:10.1016/j.medengphy.2017.02.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Fu XY, Zelik KE, Board WJ, Browning RC, Kuo AD. Soft tissue deformations contribute to the mechanics of walking in obese adults. Med Sci Sports Exerc. 2015;47(7):1435–1443. PubMed ID: 25380475 doi:10.1249/MSS.0000000000000554

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Zelik KE, Kuo AD. Human walking isn’t all hard work: evidence of soft tissue contributions to energy dissipation and return. J Exp Biol. 2010;213(Pt. 24):4257–4264. PubMed ID: 21113007 doi:10.1242/jeb.044297

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 177 176 62
Full Text Views 22 22 7
PDF Downloads 11 11 3