Effects of Eccentric Preloading on Concentric Vertical Jump Performance in Youth Athletes

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

This study measured peak force (PF), peak rate of force development (PRFD), peak power (PP), concentric impulse, and eccentric impulse during static jump (SJ), countermovement jump (CMJ), and drop jump (DJ) in youth athletes to examine changes in vertical jump power with progressively greater eccentric preloading in relation to age, maturity, and muscle mass. Twenty-one males ranging from 6 to 16 years old performed the following vertical jumps in a random order: SJ, CMJ, and DJ from drop heights of 20, 30, and 40 cm (DJ20, DJ30, and DJ40, respectively). Measurements included PF, PRFD, PP, eccentric impulse, and concentric impulse for each vertical jump condition. Maturity offset was calculated, while ultrasound images quantified thigh muscle cross-sectional area (CSA). PF and PRFD increased from CMJ to DJ20. PP increased from SJ to CMJ. Concentric impulse remained unchanged, but eccentric impulse increased systematically from across jumps. The change in PP from SJ to CMJ was correlated with age, height, weight, maturity offset, and CSA. The CMJ resulted in the greatest concentric PP with the least amount of eccentric preloading. The inability of young athletes to translate the energy absorbed during the eccentric phase of the stretch-shortening cycle of DJs may be influenced by growth and development.

The authors are with the Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.

Cramer (jcramer@unl.edu) is corresponding author.
Journal of Applied Biomechanics
Article Sections
References
  • 1.

    Bassa EPatikas DPanagiotidou APapadopoulou SPylianidis TKotzamanidis C. The effect of dropping height on jumping performance in trained and untrained prepubertal boys and girls. J Strength Cond Res. 2012;26(8):22582264. PubMed ID: 22027856 doi:10.1519/JSC.0b013e31823c4172

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Suchomel TJSands WAMcNeal JR. Comparison of static, countermovement, and drop jumps of the upper and lower extremities in U.S. junior national team male gymnasts. Sci Gymnast J. 2016;8(1):1530.

    • Search Google Scholar
    • Export Citation
  • 3.

    Turner ANJeffreys I. The stretch-shortening cycle: proposed mechanisms and methods for enhancement. Strength Cond J. 2010;32(4):8799. doi:10.1519/SSC.0b013e3181e928f9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Bosco CMontanari GRibacchi Ret al. Relationship between the efficiency of muscular work during jumping and the energetics of running. Eur J Appl Physiol Occup Physiol. 1987;56(2):138143. PubMed ID: 3569218 doi:10.1007/BF00640636

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Lloyd ROliver JHughes MWilliams C. The influence of chronological age on periods of accelerated adaptation of stretch-shortening cycle performance in pre and postpubescent boys. J Strength Cond Res. 2011;25(7):18891897. PubMed ID: 21499135 doi:10.1519/JSC.0b013e3181e7faa8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Gillen ZMMiramonti AAMcKay BDLeutzinger TJCramer JT. Test-retest reliability and concurrent validity of athletic performance combine tests in 6–15-year old male athletes. J Strength Cond Res. 2018;32(10):27832794.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Bobbert MFHuijing PAvan Ingen Schenau GJ. Drop jumping. I. The influence of jumping technique on the biomechanics of jumping. Med Sci Sports Exerc. 1987;19(4):332338. PubMed ID: 3657481

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Bobbert MFHuijing PAvan Ingen Schenau GJ. Drop jumping. II. The influence of dropping height on the biomechanics of drop jumping. Med Sci Sports Exerc. 1987;19(4):339346. PubMed ID: 3657482

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Bobbert MFGerritsen KGMLitjens MCAVan Soest AJ. Why is countermovement jump height greater than squat jump height? Med Sci Sports Exerc. 1996;28(11):14021412. PubMed ID: 8933491 doi:10.1097/00005768-199611000-00009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Lloyd RSOliver JLHughes MGWilliams CA. Age-related differences in the neural regulation of stretch-shortening cycle activities in male youths during maximal and sub-maximal hopping. J Electromyogr Kinesiol. 2012;22(1):3743. PubMed ID: 22000942 doi:10.1016/j.jelekin.2011.09.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Oliver JLSmith PM. Neural control of leg stiffness during hopping in boys and men. J Electromyogr Kinesiol. 2010;20(5):973979. PubMed ID: 20409733 doi:10.1016/j.jelekin.2010.03.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Bosco CTihanyi JKomi PVFekete GApor P. Store and recoil of elastic energy in slow and fast types of human skeletal muscles. Acta Physiol Scand. 1982;116(4):343349. PubMed ID: 7170997 doi:10.1111/j.1748-1716.1982.tb07152.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Marshall BMMoran KA. Which drop jump technique is most effective at enhancing countermovement jump ability, “countermovement” drop jump or “bounce” drop jump? J Sports Sci. 2013;31(12):13681374. PubMed ID: 23631690 doi:10.1080/02640414.2013.789921

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Alkjaer TMeyland JRaffalt PCLundbye-Jensen JSimonsen EB. Neuromuscular adaptations to 4 weeks of intensive drop jump training in well-trained athletes. Physiol Rep. 2013;1(5):e00099. PubMed ID: 24303171 doi:10.1002/phy2.99

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Matic MPazin NMrdakovic VJankovic NIlic DStefanovic D. Optimum drop height for maximizing power output in drop jump: the effect of maximal muscle strength. J Strength Cond Res. 2015;29(12):33003310. PubMed ID: 26020711 doi:10.1519/JSC.0000000000001018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    van Ingen Schenau GJBobbert MFde Haan A. Mechanics and energetics of the stretch-shortening cycle: a stimulating discussion. J Appl Biomech. 1997;13(4):484496. doi:10.1123/jab.13.4.484

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    McKay HTsang GHeinonen AMacKelvie KSanderson DKhan KM. Ground reaction forces associated with an effective elementary school based jumping intervention. Br J Sports Med. 2005;39(1):1014. PubMed ID: 15618332 doi:10.1136/bjsm.2003.008615

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Keiner MSander AWirth KSchmidtbleicher D. Is there a difference between active and less active children and adolescents in jump performance? J Strength Cond Res. 2013;27(6):15911596. PubMed ID: 22955629 doi:10.1519/JSC.0b013e318270fc99

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Thomas KFrench DHayes P. The effect of two plyometric training techniques on muscular power and agility in youth soccer players. J Strength Cond Res. 2009;23(1):332335. PubMed ID: 19002073 doi:10.1519/JSC.0b013e318183a01a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Lazaridis SBassa EPatikas DGiakas GGollhofer AKotzamanidis C. Neuromuscular differences between prepubescents boys and adult men during drop jump. Eur J Appl Physiol. 2010;110(1):6774. PubMed ID: 20397025 doi:10.1007/s00421-010-1452-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Quatman CEFord KRMyer GDHewett TE. Maturation leads to gender differences in landing force and vertical jump performance: a longitudinal study. Am J Sports Med. 2006;34(5):806813. PubMed ID: 16382009 doi:10.1177/0363546505281916

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Bates NAFord KRMyer GDHewett TE. Timing differences in the generation of ground reaction forces between the initial and secondary landing phases of the drop vertical jump. Clin Biomech. 2013;28(7):796799. PubMed ID: 23899938 doi:10.1016/j.clinbiomech.2013.07.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Noyes FRBarber-Westin SDFleckenstein CWalsh CWest J. The drop-jump screening test. Am J Sports Med. 2005;33(2):197207. PubMed ID: 15701605 doi:10.1177/0363546504266484

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Marina MTorrado P. Does gymnastics practice improve vertical jump reliability from the age of 8 to 10 years? J Sports Sci. 2013;31(11):11771186. PubMed ID: 23414426 doi:10.1080/02640414.2013.771816

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Linthorne NP. Analysis of standing vertical jumps using a force platform. Am J Phys. 2001;69(11):11981204. doi:10.1119/1.1397460

  • 26.

    Baca A. A comparison of methods for analyzing drop jump performance. Med Sci Sports Exerc. 1999;31(3):437442. PubMed ID: 10188749 doi:10.1097/00005768-199903000-00013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Meylan CCronin JOliver JHughes MMcMaster T. The reliability of jump kinematics and kinetics in children of different maturity status. J Strength Cond Res. 2012;26(4):10151026. PubMed ID: 22446671 doi:10.1519/JSC.0b013e31822dcec7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Warburton DERJamnik VKBredin SSDGledhill N. The physical activity readiness questionnaire for everyone (PAR-Q+) and electronic physical activity readiness medical examination (ePARmed-X+). Health Fit J Can. 2011;4(2):323.

    • Search Google Scholar
    • Export Citation
  • 29.

    Mirwald RLBaxter-Jones ADGBailey DABeunen GP. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc. 2002;34(4):689694. PubMed ID: 11932580

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Mina MABlazevich AJTsatalas TGiakas GSeitz LBKay AD. Variable, but not free-weight, resistance back squat exercise potentiates jump performance following a comprehensive task-specific warm-up. Scand J Med Sci Sports. 2019;29(3):380392. PubMed ID: 30468526

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Lloyd RSOliver JLHughes MGWilliams CA. Reliability and validity of field-based measures of leg stiffness and reactive strength index in youths. J Sports Sci. 2009;27(14):15651573. PubMed ID: 19967591 doi:10.1080/02640410903311572

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005;19(1):231240. PubMed ID: 15705040

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Meylan CMPCronin JBOliver JLHopkins WGContreras B. The effect of maturation on adaptations to strength training and detraining in 11–15-year-olds. Scand J Med Sci Sports. 2014;24(3):e164. doi:10.1111/sms.12128

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Jenkins NHoush TBergstrom Het al. Muscle activation during three sets to failure at 80 vs 30% 1RM resistance exercise. Eur J Appl Physiol. 2015;115(11):23352347. PubMed ID: 26159316 doi:10.1007/s00421-015-3214-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Haugen TTønnessen ESeiler S. The difference is in the start: impact of timing and start procedure on sprint running performance. J Strength Cond Res. 2012;26(2):473479. PubMed ID: 22233797 doi:10.1519/JSC.0b013e318226030b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Earp JKraemer WCormie Pet al. Influence of muscle-tendon unit structure on rate of force development during the squat, countermovement, and drop jumps. J Strength Cond Res. 2011;25(2):340347. PubMed ID: 21322836 doi:10.1519/JSC.0b013e3182052d78

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Kubo KKawakami YFukunaga T. Influence of elastic properties of tendon structures on jump performance in humans. J Appl Physiol. 1999;87(6):20902096. PubMed ID: 10601154 doi:10.1152/jappl.1999.87.6.2090

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Tonson ARatel SLe Fur YCozzone PBendahan D. Effect of maturation on the relationship between muscle size and force production. Med Sci Sports Exerc. 2008;40(5):918925. PubMed ID: 18408605 doi:10.1249/MSS.0b013e3181641bed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Kluka VMartin VVicencio SGet al. Effect of muscle length on voluntary activation level in children and adults. Med Sci Sports Exerc. 2015;47(4):718724. PubMed ID: 25083726 doi:10.1249/MSS.0000000000000463

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Martin VKluka VGarcia Vicencio SMaso FRatel S. Children have a reduced maximal voluntary activation level of the adductor pollicis muscle compared to adults. Eur J Appl Physiol. 2015;115(7):14851491. PubMed ID: 25694208 doi:10.1007/s00421-015-3132-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Ryan EDThompson BJHerda TJet al. The relationship between passive stiffness and evoked twitch properties: the influence of muscle CSA normalization. Physiol Meas. 2011;32(6):677686. PubMed ID: 21566269 doi:10.1088/0967-3334/32/6/005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Wilson GJMurphy AJPryor JF. Musculotendinous stiffness: its relationship to eccentric, isometric, and concentric performance. J Appl Physiol. 1994;76(6):27142719. PubMed ID: 7928905 doi:10.1152/jappl.1994.76.6.2714

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 372 372 168
Full Text Views 68 68 27
PDF Downloads 35 35 13
Altmetric Badge
PubMed
Google Scholar