Estimating the Maximum Isometric Force-Generating Capacity of Wheelchair Racing Athletes for Simulation Purposes

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

For the wheelchair racing population, it is uncertain whether musculoskeletal models using the maximum isometric force-generating capacity of nonathletic, able-bodied individuals are appropriate, as few anthropometric parameters for wheelchair athletes are reported in the literature. In this study, a sensitivity analysis was performed in OpenSim, whereby the maximum isometric force-generating capacity of muscles was adjusted in 25% increments to literature-defined values between scaling factors of 0.25x and 4.0x for 2 elite athletes, at 3 speeds representative of race conditions. Convergence of the solution was used to assess the results. Artificially weakening a model presented unrealistic values, while artificially strengthening a model excessively (4.0x) demonstrated physiologically invalid muscle force values. The ideal scaling factors were 1.5x and 1.75x for each of the athletes, respectively, as was assessed through convergence of the solution. This was similar to the relative difference in limb masses between dual-energy X-Ray absorptiometry data and anthropometric data in the literature (1.49x and 1.70x), suggesting that dual-energy X-ray absorptiometry may be used to estimate the required scaling factors. The reliability of simulations for elite wheelchair racing athletes can be improved by appropriately increasing the maximum isometric force-generating capacity of muscles.

Lewis, Robertson, and Grimshaw are with the School of Mechanical Engineering, The University of Adelaide, Adelaide, SA, Australia. Lewis, Phillips, and Portus are with Movement Science, Australian Institute of Sport, Canberra, ACT, Australia.

Lewis (amy.lewis@adelaide.edu.au) is corresponding author.
Journal of Applied Biomechanics
Article Sections
References
  • 1.

    Brodwin MGSiu FWHoward JBrodwin ER. Medical Psychosocial and Vocational Aspects of Disability. 3rd ed. Athens, GA: Elliott & Fitzpatrick, Inc.; 2009.

    • Search Google Scholar
    • Export Citation
  • 2.

    Bhambhani Y. Physiology of wheelchair racing in athletes with spinal cord injury. Sports Med. 2002;32(1):2351. PubMed ID: 11772160 doi:10.2165/00007256-200232010-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Dionyssiotis Y. Changes in Bone Density and Strength of the Tibia and Alterations of Lean and Fat Mass in Chronic Paraplegic Men. [Doctoral Dissertaion] Athens, GA: Laboratory for Research of the Musculoskeletal System, University of Athens; 2008.

    • Search Google Scholar
    • Export Citation
  • 4.

    Dionyssiotis Y. Body composition in paraplegia. In: Dianyssiotis Y ed. Topics in Paraplegia. Rijeka: InTech; 2014.

  • 5.

    Miyahara KWang DHMori Ket al. Effect of sports activity on bone mineral density in wheelchair athletes. J Bone Miner Metab. 2008;26(1):101106. PubMed ID: 18095071 doi:10.1007/s00774-007-0789-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Maynard FM JrBracken MBCreasey Get al. International standards for neurological and functional classification of spinal cord injury. Spinal Cord. 1997;35(5):266274. PubMed ID: 9160449 doi:10.1038/sj.sc.3100432

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Kocina P. Body composition of spinal cord injured adults. Sports Med. 1997;23(1):4860. PubMed ID: 9017859 doi:10.2165/00007256-199723010-00005

  • 8.

    Taylor AWMcDonell EBrassard L. The effects of an arm ergometer training programme on wheelchair subjects. Paraplegia. 1986;24(2):105114. PubMed ID: 3714290

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Taylor AWMcDonnell ERoyer DLoiselle TRLush NSteadward R. Skeletal muscle analysis of wheelchair athletes. Paraplegia. 1979;17(4):456460.

    • Search Google Scholar
    • Export Citation
  • 10.

    Bernard P-LPeruchon EMicallef J-PHertog CRabischong P. Balance and stabilization capability of paraplegic wheelchair athletes. J Rehabil Res Dev. 1994;31(4):287. PubMed ID: 7869276

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Lin H-TSu F-CWu H-WAn K-N. Muscle forces analysis in the shoulder mechanism during wheelchair propulsion. Proc Inst Mech Eng H. 2004;218(4):213221. PubMed ID: 15376723 doi:10.1243/0954411041561027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Rankin JWKwarciak AMRichter WMNeptune RR. The influence of wheelchair propulsion technique on upper extremity muscle demand: a simulation study. Clin Biomech. 2012;27(9):879886. doi:10.1016/j.clinbiomech.2012.07.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Rankin JWKwarciak AMRichter WMNeptune RR. Muscle function during the push phase of wheelchair propulsion. Paper presented at: American Society of Biomechanics; August 18–212010. Providence, RI.

    • Export Citation
  • 14.

    Veeger HEJRozendaal LAvan der Helm FCT. Load on the shoulder in low intensity wheelchair propulsion. Clin Biomech. 2002;17(3):211218. doi:10.1016/S0268-0033(02)00008-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Morrow MMRankin JWNeptune RRKaufman KR. A comparison of static and dynamic optimization muscle force predictions during wheelchair propulsion. J Biomech. 2014;47(14):34593465. PubMed ID: 25282075 doi:10.1016/j.jbiomech.2014.09.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    van Drongelen Svan der Woude LHJanssen TWAngenot ELChadwick EKVeeger DH. Glenohumeral contact forces and muscle forces evaluated in wheelchair-related activities of daily living in able-bodied subjects versus subjects with paraplegia and tetraplegia. Arch Phys Med Rehabil. 2005;86:14341440. PubMed ID: 16003677 doi:10.1016/j.apmr.2005.03.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Mulroy SJFarrokhi SNewsam CJPerry J. Effects of spinal cord injury level on the activity of shoulder muscles during wheelchair propulsion: an electromyographic study. Arch Phys Med Rehabil. 2004;85(6):925934. PubMed ID: 15179646 doi:10.1016/j.apmr.2003.08.090

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Qi LWakeling JGrange SFerguson-Pell M. Changes in surface electromyography signals and kinetics associated with progression of fatigue at two speeds during wheelchair propulsion. J Rehabil Res Dev. 2012;49(1):2334. PubMed ID: 22492335 doi:10.1682/JRRD.2011.01.0009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Howarth SJPronovost LMPolgar JMDickerson CRCallaghan JP. Use of a geared wheelchair wheel to reduce propulsive muscular demand during ramp ascent: analysis of muscle activation and kinematics. Clin Biomech. 2010;25(1):2128. doi:10.1016/j.clinbiomech.2009.10.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Louis NGorce P. Surface electromyography activity of upper limb muscle during wheelchair propulsion: Influence of wheelchair configuration. Clin Biomech. 2010;25(9):879885. doi:10.1016/j.clinbiomech.2010.07.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Mulroy SJGronley JKNewsam CJPerry J. Electromyographic activity of shoulder muscles during wheelchair propulsion by paraplegic persons. Arch Phys Med Rehabil. 1996;77(2):187193. PubMed ID: 8607745 doi:10.1016/S0003-9993(96)90166-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Leary MGruijters JMazur MSubic ABurton MFuss FK. A fundamental model of quasi-static wheelchair biomechanics. Med Eng Phys. 2012;34(9):12781286. PubMed ID: 22763021 doi:10.1016/j.medengphy.2011.12.018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Neptune RR. Computer modeling and simulation of human movement. Applications in sport and rehabilitation. Phys Med Rehabil Clin N Am. 2000;11(2):417434. PubMed ID: 10810769 doi:10.1016/S1047-9651(18)30137-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Arnold ASDelp SL. Computer modeling of gait abnormalities in cerebral palsy: application to treatment planning. Theor Issues Ergon Sci. 2005;6(3-4):305312. doi:10.1080/14639220412331329636

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Rajagopal ADembia CLDeMers MSDelp DDHicks JLDelp SL. Full-body musculoskeletal model for muscle-driven simulation of human gait. IEEE Trans Biomed Eng. 2016;63(10):20682079. PubMed ID: 27392337 doi:10.1109/TBME.2016.2586891

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Hill A. First and Last Experiments in Muscle Mechanics. London, UK: Cambridge University Press; 1970.

  • 27.

    Zajac F. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng. 1989;17(4):359411.

  • 28.

    Knarr BARamsay JWBuchanan TSHigginson JSBinder-Macleod SA. Muscle volume as a predictor of maximum force generating ability in the plantar flexors post-stroke. Muscle Nerve. 2013;48(6):971976. PubMed ID: 23494851 doi:10.1002/mus.23835

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    O’Brien TDReeves NDBaltzopoulos VJones DAMaganaris CN. In vivo measurements of muscle specific tension in adults and children. Exp Physiol. 2010;95(1):202210. doi:10.1113/expphysiol.2009.048967

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Rossi MLyttle AEl-Sallam ABenjanuvatra NBlanksby B. Body segment inertial parameters of elite swimmers using DXA and indirect methods. J Sports Sci Med. 2013;12(4):761775. PubMed ID: 24421737

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Durkin JLDowling JJ. Analysis of body segment parameter differences between four human populations and the estimation errors of four popular mathematical models. J Biomech Eng. 2003;125(4):515522. PubMed ID: 12968576 doi:10.1115/1.1590359

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Durkin JLDowling JJ. Body segment parameter estimation of the human lower leg using an elliptical model with validation from DEXA. Ann Biomed Eng. 2006;34(9):14831493. PubMed ID: 16847589 doi:10.1007/s10439-006-9088-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Durkin JLDowling JJAndrews DM. The measurement of body segment inertial parameters using dual energy X-ray absorptiometry. J Biomech. 2002;35(12):15751580. PubMed ID: 12445610 doi:10.1016/S0021-9290(02)00227-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Laschowski BMcPhee J. Body segment parameters of Paralympic athletes from dual-energy X-ray absorptiometry. Sports Eng. 2016;19(3):155162. doi:10.1007/s12283-016-0200-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Laschowski BMcPhee J. Quantifying body segment parameters using dual-energy X-ray absorptiometry: a Paralympic wheelchair curler case report. Procedia Eng. 2016;147:163167. doi:10.1016/j.proeng.2016.06.207

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Hind KOldroyd BTruscott JG. In vivo precision of the GE Lunar iDXA densitometer for the measurement of total body composition and fat distribution in adults. Eur J Clin Nutr. 2011;65(1):140142. PubMed ID: 20842171 doi:10.1038/ejcn.2010.190

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    van Drongelen Svan der Woude LHVJanssen TWJAngenot ELDChadwick EKJVeeger HEJ. Glenohumeral joint loading in tetraplegia during weight relief lifting: a simulation study. Clin Biomech. 2006;21(2):128137. doi:10.1016/j.clinbiomech.2005.09.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Slowik JSMcNitt-Gray JLRequejo PSMulroy SJNeptune RR. Compensatory strategies during manual wheelchair propulsion in response to weakness in individual muscle groups: a simulation study. Clin Biomech. 2016;33:3441. doi:10.1016/j.clinbiomech.2016.02.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Cooper RADiGiovine CPBoninger MLShimada SDKoontz AMBaldwin MA. Filter frequency selection for manual wheelchair biomechanics. J Rehabil Res Dev. 2002;39(3):323326. PubMed ID: 12173753

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Saul KRHu XGoehler CMet al. Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal model. Comput Methods Biomech Biomed Engin. 2015;18(13):14451458. PubMed ID: 24995410 doi:10.1080/10255842.2014.916698

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Delp SLAnderson FCArnold ASet al. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 2007;54(11):19401950. PubMed ID: 18018689 doi:10.1109/TBME.2007.901024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Lewis ARRobertson WPhillip EJGrimshaw PNPortus M. Mass distribution of wheelchair athletes assessed using DXA scans and biomechanical simulations. J Biomech Eng. 2019. doi:10.1115/1.4043869

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Nana ASlater GJHopkins WGBurke LM. Effects of exercise sessions on DXA measurements of body composition in active people. Med Sci Sports Exerc. 2013;45(1):178185. PubMed ID: 22895377 doi:10.1249/MSS.0b013e31826c9cfd

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Chinappen-Horsley UBlake GMFogelman ISpector TD. A method for determining skeletal lengths from DXA images. BMC Musculoskelet Disord. 2007;8(1):113. doi:10.1186/1471-2474-8-113

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Bortoletto RPagello EPiovesan D. Effects of reserve actuators on optimization solutions: from muscle force to joint stiffness. Paper presented at: 2015 IEEE International Conference on Rehabilitation Robotics (ICORR); August 11–142015. Nanyang Technological University, Singapore.

    • Export Citation
  • 46.

    Praagman MChadwick EKvan der Helm FCVeeger HE. The relationship between two different mechanical cost functions and muscle oxygen consumption. J Biomech. 2006;39(4):758765. PubMed ID: 16439246 doi:10.1016/j.jbiomech.2004.11.034

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Arnet Uvan Drongelen Svan der Woude LHVVeeger DHEJ. Shoulder load during handcycling at different incline and speed conditions. Clin Biomech. 2012;27(1):16. doi:10.1016/j.clinbiomech.2011.07.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Crowninshield RDBrand RA. A physiologically based criterion of muscle force prediction in locomotion. J Biomech. 1981;14(11):793801. PubMed ID: 7334039 doi:10.1016/0021-9290(81)90035-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Ren LJones RKHoward D. Whole body inverse dynamics over a complete gait cycle based only on measured kinematics. J Biomech. 2008;41(12):27502759. PubMed ID: 18672243 doi:10.1016/j.jbiomech.2008.06.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Bulbulian RJohnson REGruber JJDarabos B. Body composition in paraplegic male athletes. Med Sci Sports Exerc. 1987;19(3):195201. PubMed ID: 3600232 doi:10.1249/00005768-198706000-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Holzbaur KRMurray WMDelp SL. A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Ann Biomed Eng. 2005;33(6):829840. PubMed ID: 16078622 doi:10.1007/s10439-005-3320-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Valente GTaddei FJonkers I. Influence of weak hip abductor muscles on joint contact forces during normal walking: probabilistic modeling analysis. J Biomech. 2013;46(13):21862193. PubMed ID: 23891175 doi:10.1016/j.jbiomech.2013.06.030

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Chadwick EKBlana DKirsch RFVan den Bogert AJ. Real-time simulation of three-dimensional shoulder girdle and arm dynamics. IEEE Trans Biomed Eng. 2014;61(7):19471956. PubMed ID: 24956613 doi:10.1109/TBME.2014.2309727

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Finley MARasch EKKeyser RERodgers MM. The biomechanics of wheelchair propulsion in individuals with and without upper-limb impairment. J Rehabil Res Dev. 2004;41(3B):385395. PubMed ID: 15543456 doi:10.1682/JRRD.2004.03.0385

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Jones EJBishop PAWoods AKGreen JM. Cross-sectional area and muscular strength: a brief review. Sports Med. 2008;38(12):987994. PubMed ID: 19026016 doi:10.2165/00007256-200838120-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Bruce SAPhillips SKWoledge RC. Interpreting the relation between force and cross-sectional area in human muscle. Med Sci Sports Exerc. 1997;29(5):677683. PubMed ID: 9140906 doi:10.1097/00005768-199705000-00014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Aguado-Henche SCarrascosa-Sánchez JCristóbal-Aguado SClemente de Arriba C. Normative values for body compartments of sedentary white people. MOJ Anat Physiol. 2017;4(1):217225.

    • Search Google Scholar
    • Export Citation
  • 58.

    Inukai YTakahashi KWang DHKira S. Assessment of total and segmental body composition in spinal cord-injured athletes in Okayama prefecture of Japan. Acta Med Okayama. 2006;60(2):99106. PubMed ID: 16680186

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Laschowski BMehrabi NMcPhee J. Optimization-based motor control of a paralympic wheelchair athlete. Sports Eng. 2018;21(3):207215.

  • 60.

    Bruno AGBouxsein MLAnderson DE. Development and validation of a musculoskeletal model of the fully articulated thoracolumbar spine and rib cage. J Biomech Eng. 2015;137(8):081003. PubMed ID: 25901907 doi:10.1115/1.4030408

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 21 21 21
Full Text Views 4 4 3
PDF Downloads 4 4 3
Altmetric Badge
PubMed
Google Scholar