Autoregressive Modeling as Diagnostic Tool to Identify Postanterior Cruciate Ligament Reconstruction Limb Asymmetry

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Between-limb deficits in vertical ground reaction force (vGRF) production continue to remain years after anterior cruciate ligament rehabilitation, resulting in altered dynamic stability. However, the challenge is in identifying ways to assess this between-limb stability. This study implemented second-order autoregressive [AR(2)] modeling and its stationarity triangle to both quantitatively and visually delineate differences in dynamic stability from peak vGRF data in controls and post-anterior cruciate ligament reconstruction (ACLR) individuals during running. It was hypothesized that post-ACLR individuals would exhibit less dynamic stability than the controls, and that they would reside in a different location on the stationarity triangle, thus denoting differences in stability. The results presented supported the hypothesis that post-ACLR individuals exhibited significantly less dynamic stability than their control counterparts based on their model coefficients (AR1 P < .01; AR2 P = .02). These findings suggested that the post-ACLR individuals adopted a similar running pattern, possibly due to muscle weakness asymmetry, which was less dynamically stable and potentially places them at greater risk for injury. The ability of this approach to both quantitatively and visually delineate differences between these 2 groups indicates its potential as a return-to-sport decision tool.

Morgan (Kristin.2.morgan@uconn.edu) is with the Dept. of Biomedical Engineering, University of Connecticut, Storrs, CT, USA.

  • 1.

    Adams D, Logerstedt D, Hunter-Giordano A, Axe MJ, Snyder-Mackler L. Current concepts for anterior cruciate ligament reconstruction: a criterion-based rehabilitation progression. J Orthop Sports Phys Ther. 2012;42(7):601–614. PubMed ID: 22402434 doi:10.2519/jospt.2012.3871

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Boden BP, Griffin LY, Garrett Jr WE. Etiology and prevention of noncontact ACL injury. Phys Sportsmed. 2000;28(4):53–60. PubMed ID: 20086634 doi:10.3810/psm.2000.04.841

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Paterno MV, Ford KR, Myer GD, Heyl R, Hewett TE. Limb asymmetries in landing and jumping 2 years following anterior cruciate ligament reconstruction. Clin J Sport Med. 2007;17(4):258–262. PubMed ID: 17620778 doi:10.1097/JSM.0b013e31804c77ea

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Krafft FC, Stetter BJ, Stein T, et al. How does functionality proceed in ACL reconstructed subjects? Proceeding of functional performance from pre-to six months post-ACL reconstruction. PLoS ONE. 2017;12(5):e0178430. PubMed ID: 28562674 doi:10.1371/journal.pone.0178430

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Wellsandt E, Failla MJ, Snyder-Mackler L. Limb symmetry indexes can overestimate knee function after anterior cruciate ligament injury. J Orthop Sports Phys Ther. 2017;47(5):334–338. PubMed ID: 28355978 doi:10.2519/jospt.2017.7285

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Cavanaugh JT, Powers M. ACL rehabilitation progression: where are we now? Curr Rev Musculoskelet Med. 2017;10(3):289–296. doi:10.1007/s12178-017-9426-3

  • 7.

    Lewek M, Rudolph K, Axe M, Snyder-Mackler L. The effect of insufficient quadriceps strength on gait after anterior cruciate ligament reconstruction. Clin Biomech. 2002;17(1):56–63. doi:10.1016/S0268-0033(01)00097-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Jensen TO, Fischer-Rasmussen T, Kjaer M, Magnusson SP. Proprioception in poor-and well-functioning anterior cruciate ligament deficient patients. J Rehabil Med. 2002;34(3):141–149. PubMed ID: 12395942 doi:10.1080/165019702753714174

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Myer GD, Paterno MV, Ford KR, Quatman CE, Hewett TE. Rehabilitation after anterior cruciate ligament reconstruction: criteria-based progression through the return-to-sport phase. J Orthop Sports Phys Ther. 2006;36(6):385–402. PubMed ID: 16776488 doi:10.2519/jospt.2006.2222

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Noehren B, Wilson H, Miller C, Lattermann C. Long term gait deviations in anterior cruciate ligament reconstructed females. Med Sci Sports Exerc. 2013;45(7):1340–1347. PubMed ID: 23568090 doi:10.1249/MSS.0b013e318285c6b6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    White K, Logerstedt D, Snyder-Mackler L. Gait asymmetries persist 1 year after anterior cruciate ligament reconstruction. Orthop J Sports Med. 2013;1(2):232596711349696. PubMed ID: 25685823 doi:10.1177/2325967113496967

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Dingwell JB, Cusumano JP, Cavanagh PR, Sternad D. Local dynamic stability versus kinematic variability of continuous overground and treadmill walking. J Biomech Eng. 2001;123(1):27–32. PubMed ID: 11277298 doi:10.1115/1.1336798

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Riva F, Bisi MC, Stagni R. Gait variability and stability measures: minimum number of strides and within-session reliability. Comput Biol Med. 2014;50:9–13. PubMed ID: 24792493 doi:10.1016/j.compbiomed.2014.04.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Stergiou N, Moraiti C, Giakas G, Ristanis S, Georgoulis AD. The effect of the walking speed on the stability of the anterior cruciate ligament deficient knee. Clin Biomech. 2004;19(9):957–963. doi:10.1016/j.clinbiomech.2004.06.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Box GEP, Jenkins GM. Time Series Analysis: Forecasting and Control, revised ed. San Francisco, CA: Holden-Day; 1976.

  • 16.

    Montgomery DC, Jennings CL, Kulahci M. Introduction to Time Series Analysis and Forecasting. Hoboken, NJ: John Wiley & Sons; 2008.

  • 17.

    Koontz AM, Cooper RA, Boninger ML. An autoregressive modeling approach to analyzing wheelchair propulsion forces. Med Eng Phys. 2001;23(4):285–291. PubMed ID: 11427366 doi:10.1016/S1350-4533(00)00082-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Lee J, Chon KH. An autoregressive model-based particle filtering algorithms for extraction of respiratory rates as high as 90 breaths per minute from pulse oximeter. IEEE Trans Biomed Eng. 2010;57(9):2158–2167. doi:10.1109/TBME.2010.2051330

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Winter SL, Challis JH. Classifying the variability in impact and active peak vertical ground reaction forces during running using DFA and ARFIMA models. Hum Move Sci. 2017;51:153–160. doi:10.1016/j.humov.2016.12.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Boggess G, Morgan K, Johnson D, Ireland ML, Reinbolt JA, Noehren B. Neuromuscular compensatory strategies at the trunk and lower limb are not resolved following an ACL reconstruction. Gait Posture. 2018;60:81–87. PubMed ID: 29169096 doi:10.1016/j.gaitpost.2017.11.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Morgan KD, Donnelly CJ, Reinbolt JA. Elevated gastrocnemius forces compensate for decreased hamstrings forces during the weight-acceptance phase of single-leg jump landing: implications for anterior cruciate ligament injury risk. J Biomech. 2014;47(13):3295–3302. PubMed ID: 25218505 doi:10.1016/j.jbiomech.2014.08.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Hamill J, van Emmerik RE, Heiderscheit BC, Li L. A dynamical systems approach to lower extremity running injuries. Clin Biomech. 1999;14(5):297–308. doi:10.1016/S0268-0033(98)90092-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Robertson GE, Caldwell GE, Hamill J, Kamen G, Whittlesey S. Research Methods in Biomechanics. Champaign, IL: Human Kinetics; 2013.

  • 24.

    van Emmerik RE, Rosenstein MT, McDermott WJ, Hamill J. A nonlinear dynamics approach to human movement. J Appl Biomech. 2004;20(4):396–420. doi:10.1123/jab.20.4.396

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Georgoulis AD, Moraiti C, Ristanis S, Stergiou N. A novel approach to measure variability in the anterior cruciate ligament deficient knee during walking: the use of the approximate entropy in orthopaedics. J Clin Monit Comput. 2006;20(1):11–18. PubMed ID: 16523229 doi:10.1007/s10877-006-1032-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Kline PW, Morgan KD, Johnson DL, Ireland ML, Noehren B. Impaired quadriceps rate of torque development and knee mechanics after anterior cruciate ligament reconstruction with patellar tendon autograft. Am J Sports Med. 2015;43(10):2553–2558. PubMed ID: 26276828 doi:10.1177/0363546515595834

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Morgan KD, Zheng Y, Bush H, Noehren B. Nyquist and Bode stability criteria to assess changes in dynamic knee stability in healthy and anterior cruciate ligament reconstructed individuals during walking. J Biomech. 2016;49(9):1686–1691. PubMed ID: 27126984 doi:10.1016/j.jbiomech.2016.03.049

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 290 290 22
Full Text Views 19 19 0
PDF Downloads 12 12 0