Wrist Posture Does Not Influence Finger Interdependence

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

A task involving an instructed finger movement causes involuntary movements in the noninstructed fingers of the hand, also known as finger interdependence. It is associated with both mechanical and neural mechanisms. The current experiment investigated the effect of finger interdependence due to systematic changes of the wrist posture, close to neutral. Eight right-handed healthy human participants performed submaximal cyclic flexion and extension at the metacarpophalangeal joint at 0° neutral, 30° extension, and 30° flexion wrist postures, respectively. The experiment comprised of an instruction to move one of the 4 fingers—index, middle, ring, and little. Movements of the instructed and noninstructed fingers were recorded. Finger interdependence was quantified using enslavement matrix, individuation index, and stationarity index, and it was compared across wrist postures. The authors found that the finger interdependence does not change with changes in wrist posture. Further analysis showed that individuation and stationarity indices were mostly equivalent across wrist postures, and their effects were much smaller than the average differences present among the fingers. The authors conclude that at wrist postures close to neutral, the finger interdependence is not affected by wrist posture.

Chakrabhavi is with the Centre for Neuroscience, Indian Institute of Science, Bengaluru, Karnataka, India. SKM is with the Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.

SKM (skm@iitm.ac.in) is corresponding author.
  • 1.

    Häger-Ross C, Schieber MH. Quantifying the independence of human finger movements: comparisons of digits, hands, and movement frequencies. J Neurosci. 2000;20(22):85428550. PubMed ID: 11069962 doi:10.1523/JNEUROSCI.20-22-08542.2000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Zatsiorsky VM, Li ZM, Latash ML. Enslaving effects in multi-finger force production. Exp Brain Res. 2000;131(2):187195. PubMed ID: 10766271 doi:10.1007/s002219900261

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Kilbreath SL, Gandevia SC. Limited independent flexion of the thumb and fingers in human subjects. J Physiol. 1994;479(pt 3):487497. doi:10.1113/jphysiol.1994.sp020312

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Schieber MH, Gardinier J, Liu J. Tension distribution to the five digits of the hand by neuromuscular compartments in the macaque flexor digitorum profundus. J Neurosci. 2001;21(6):21502158. PubMed ID: 11245699 doi:10.1523/JNEUROSCI.21-06-02150.2001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Butler TJ, Kilbreath SL, Gorman RB, Gandevia SC. Selective recruitment of single motor units in human flexor digitorum superficialis muscle during flexion of individual fingers. J Physiol. 2005;567(1):301309. doi:10.1113/jphysiol.2005.089201

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Sanei K, Keir PJ. Independence and control of the fingers depend on direction and contraction mode. Hum Mov Sci. 2013;32(3):457471. PubMed ID: 23643494 doi:10.1016/j.humov.2013.01.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Reilly KT, Schieber MH. Incomplete functional subdivision of the human multitendoned finger muscle flexor digitorum profundus: an electromyographic study. J Neurophysiol. 2003;90(4):25602570. PubMed ID: 12815024 doi:10.1152/jn.00287.2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Schieber MH, Hibbard LS. How somatotopic is the motor cortex hand area? Science. 1993;261(5120):489492. PubMed ID: 8332915 doi:10.1126/science.8332915

  • 9.

    Poliakov AV, Schieber MH. Limited functional grouping of neurons in the motor cortex hand area during individuated finger movements: a cluster analysis. J Neurophysiol. 1999;82(6):34883505. PubMed ID: 10601477 doi:10.1152/jn.1999.82.6.3488

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Georgopoulos AP, Pellizzer G, Poliakov AV, Schieber MH. Neural coding of finger and wrist movements. J Comput Neurosci. 1999;6(3):279288. PubMed ID: 10406138 doi:10.1023/A:1008810007672

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Schieber MH, Santello M. Hand function: peripheral and central constraints on performance. J Appl Physiol. 2004;96(6):22932300. PubMed ID: 15133016 doi:10.1152/japplphysiol.01063.2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Zatsiorsky VM, Li Z-M, Latash ML. Coordinated force production in multi-finger tasks: finger interaction and neural network modeling. Biol Cybern. 1998;79(2):139150. PubMed ID: 9791934 doi:10.1007/s004220050466

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Li Z-M, Dun S, Harkness DA, Brininger TL. Motion enslaving among multiple fingers of the human hand. Motor Control. 2004;8(1):115. PubMed ID: 14973334 doi:10.1123/mcj.8.1.1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Lang CE, Schieber MH. Human finger independence: limitations due to passive mechanical coupling versus active neuromuscular control. J Neurophysiol. 2004;92(5):28022810. PubMed ID: 15212429 doi:10.1152/jn.00480.2004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Latash ML, Scholz JF, Danion F, Schöner G. Structure of motor variability in marginally redundant multifinger force production tasks. Exp Brain Res. 2001;141(2):153165. PubMed ID: 11713627 doi:10.1007/s002210100861

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Scholz JP, Danion F, Latash ML, Schöner G. Understanding finger coordination through analysis of the structure of force variability. Biol Cybern. 2002;86(1):2939. PubMed ID: 11918210 doi:10.1007/s004220100279

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Kaplan EB. Functional and Surgical Anatomy of the Hand. Philadelphia, PA: JB Lippincott Co; 1965.

  • 18.

    Keir PJ, Wells RP, Ranney DA. Passive properties of the forearm musculature with reference to hand and finger postures. Clin Biomech. 1996;11(7):401409. doi:10.1016/0268-0033(96)00029-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Hazelton FT, Smidt GL, Flatt AE, Stephens RI. The influence of wrist position on the force produced by the finger flexors. J Biomech. 1975;8(5):301306. PubMed ID: 1184601 doi:10.1016/0021-9290(75)90082-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    May SE, Keir PJ. Effect of wrist posture, rate of force development/relaxation, and isotonic contractions on finger force independence. J Electromyogr Kinesiol. 2018;38:215223. PubMed ID: 29221665 doi:10.1016/j.jelekin.2017.11.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Lakens D. Equivalence tests: a practical primer for t tests, correlations, and meta-analyses. Soc Psychol Personal Sci. 2017;8(4):355362. PubMed ID: 28736600 doi:10.1177/1948550617697177

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    von Schroeder HP, Botte MJ, Gellman H. Anatomy of the juncturae tendinum of the hand. J Hand Surg Am. 1990;15(4):595602. PubMed ID: 2380523 doi:10.1016/S0363-5023(09)90021-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Winges SA, Santello M. Common input to motor units of digit flexors during multi-digit grasping. J Neurophysiol. 2004;92(6):32103220. PubMed ID: 15240764 doi:10.1152/jn.00516.2004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Maas H, Veeger HEJ (Dirkjan), Stegeman DF. Understanding the constraints of finger motor control. J Electromyogr Kinesiol. 2018;38:182186. PubMed ID: 29089176 doi:10.1016/j.jelekin.2017.10.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Slobounov S, Chiang H, Johnston J, Ray W. Modulated cortical control of individual fingers in experienced musicians: an EEG study. Clin Neurophysiol. 2002;113(12):20132024. PubMed ID: 12464342 doi:10.1016/S1388-2457(02)00298-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Chiang H, Slobounov SM, Ray W. Practice-related modulations of force enslaving and cortical activity as revealed by EEG. Clin Neurophysiol. 2004;115(5):10331043. PubMed ID: 15066527 doi:10.1016/j.clinph.2003.12.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Li ZM. The influence of wrist position on individual finger forces during forceful grip. J Hand Surg Am. 2002;27(5):886896. doi:10.1053/jhsu.2002.35078

  • 28.

    Doyle JR. Surgical Anatomy of the Hand and Upper ExtremityPhiladelphia, PA: Lippincott Williams & Wilkins; 2003.

  • 29.

    Leijnse JN, Snijders CJ, Bonte JE, et al. The hand of the musician: the kinematics of the bidigital finger system with anatomical restrictions. J Biomech. 1993;26(10):11691179. PubMed ID: 8253822 doi:10.1016/0021-9290(93)90065-M

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Leijnse JNAL. Measuring force transfers in the deep flexors of the musician’s hand: theoretical analysis, clinical examples. J Biomech. 1997;30(9):873882. PubMed ID: 9302609 doi:10.1016/S0021-9290(97)00045-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    McIsaac TL, Fuglevand AJ. Motor-unit synchrony within and across compartments of the human flexor digitorum superficialis. J Neurophysiol. 2007;97(1):550556. PubMed ID: 17093112 doi:10.1152/jn.01071.2006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Ambike SS, Paclet F, Latash ML, Zatsiorsky VM. Grip-force modulation in multi-finger prehension during wrist flexion and extension. Exp Brain Res. 2013;227(4):509522. PubMed ID: 23625077 doi:10.1007/s00221-013-3527-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Werremeyer MM, Cole KJ. Wrist action affects precision grip force. J Neurophysiol. 1997;78(1):271280. PubMed ID: 9242279 doi:10.1152/jn.1997.78.1.271

  • 34.

    Paclet F, Ambike S, Zatsiorsky VM, Latash ML. Enslaving in a serial chain: interactions between grip force and hand force in isometric tasks. Exp Brain Res. 2014;232(3):775787. PubMed ID: 24309747 doi:10.1007/s00221-013-3787-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Cuadra C, Falaki A, Sainburg RL, Sarlegna FR, Latash ML. Case studies in neuroscience: the central and somatosensory contributions to finger inter-dependence and coordination: a study of a “deafferented person.” J Neurophysiol. 2019;121(6):20832087. PubMed ID: 30969884 doi:10.1152/jn.00153.2019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Honing ML, Ritt MJ, Bos KE. An anomalous flexor digitorum superficialis to the index finger. Surg Radiol Anat. 1995;17(4):339341. PubMed ID: 8896155 doi:10.1007/BF01795194

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Aghasi MK, Rzetelny V, Axer A. The flexor digitorum superficialis as a cause of bilateral carpal-tunnel syndrome and trigger wrist. A case report. J Bone Joint Surg Am. 1980;62(1):134135. PubMed ID: 7351405 doi:10.2106/00004623-198062010-00022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Linburg RM, Comstock BE. Anomalous tendon slips from the flexor pollicis longus to the flexor digitorum profundus. J Hand Surg Am. 1979;4(1):7983. PubMed ID: 759509 doi:10.1016/S0363-5023(79)80110-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Agee JM, Maher TR, Thompson MS. Moment arms of the digital flexor tendons at the wrist: role of differential loading in stability of carpal tunnel tendons. J Hand Surg Am. 1998;23(6):9981003. PubMed ID: 9848549 doi:10.1016/S0363-5023(98)80006-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 460 460 30
Full Text Views 19 19 1
PDF Downloads 10 10 1