Chronic Ankle Instability Does Not Influence Tibiofemoral Contact Forces During Drop Landings Using a Musculoskeletal Model

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

The purpose of the study was to compare the tibiofemoral contact forces of participants with chronic ankle instability versus controls during landings using a computer-simulated musculoskeletal model. A total of 21 female participants with chronic ankle instability and 21 pair-matched controls performed a drop landing task on a tilted force plate. A 7-camera motion capture system and 2 force plates were used to test participants’ lower-extremity biomechanics. A musculoskeletal model was used to calculate the tibiofemoral contact forces (femur on tibia). No significant between-group differences were observed for the peak tibiofemoral contact forces (P = .25–.48) during the landing phase based on paired t tests. The group differences ranged from 0.05 to 0.58 body weight (BW). Most participants demonstrated a posterior force (peak,  ∼1.1 BW) for most duration of the landing phase and a medial force (peak, ∼0.9 BW) and large compressive force (peak, ∼10 BW) in the landing phase. The authors conclude that chronic ankle instability may not be related to the increased tibiofemoral contact forces or knee injury mechanisms during landings on the tilted surface.

Li is with the Department of Health and Human Performance, Texas State University, San Marcos, TX, USA. Wang is with the School of Kinesiology, Ball State University, Muncie, IN, USA. Simpson is with the Department of Kinesiology, University of Georgia, Athens, GA, USA.

Li (yumeng.li@txstate.edu) is corresponding author.
  • 1.

    Kobayashi T, Gamada K. Lateral ankle sprain and chronic ankle instability: a critical review. Foot Ankle Spec. 2014;7(4):298–326. PubMed ID: 24962695 doi:10.1177/1938640014539813

    • Search Google Scholar
    • Export Citation
  • 2.

    Lin CF, Chen CY, Lin CW. Dynamic ankle control in athletes with ankle instability during sports maneuvers. Am J Sports Med. 2011;39(9):2007–2015. PubMed ID: 21622814 doi:10.1177/0363546511406868

    • Search Google Scholar
    • Export Citation
  • 3.

    Willems T, Witvrouw E, Verstuyft J, Vaes P, De Clercq D. Proprioception and muscle strength in subjects with a history of ankle sprains and chronic instability. J Athl Train. 2002;37(4):487–493. PubMed ID: 12937572 doi:10.4085/1062-6050-44.6.617

    • Search Google Scholar
    • Export Citation
  • 4.

    Denegar CR, Hertel J, Fonseca J. The effect of lateral ankle sprain on dorsiflexion range of motion, posterior talar glide, and joint laxity. J Orthop Sport Phys Ther. 2002;32(4):166–173. http://articles.sirc.ca/search.cfm?id=S-821514

    • Search Google Scholar
    • Export Citation
  • 5.

    Hoch MC, Staton GS, McKeon JMM, Mattacola CG, McKeon PO. Dorsiflexion and dynamic postural control deficits are present in those with chronic ankle instability. J Sci Med Sport. 2012;15(6):574–579. PubMed ID: 22575498

    • Search Google Scholar
    • Export Citation
  • 6.

    Brown CN, Rosen AB, Ko J. Ankle ligament laxity and stiffness in chronic ankle instability. Foot ankle Int. 2015;36(5):565–572. PubMed ID: 25511756 doi:10.1177/1071100714561057

    • Search Google Scholar
    • Export Citation
  • 7.

    Delahunt E, Monaghan K, Caulfield B. Changes in lower limb kinematics, kinetics, and muscle activity in subjects with functional instability of the ankle joint during a single leg drop jump. J Orthop Res. 2006;24(10):1991–2000. PubMed ID: 16894592 doi:10.1002/jor

    • Search Google Scholar
    • Export Citation
  • 8.

    Caulfield BM, Garrett M. Functional instability of the ankle: differences in patterns of ankle and knee movement prior to and post landing in a single leg jump. Int J Sports Med. 2002;23(31):64–68. doi:10.1055/s-2002-19272

    • Search Google Scholar
    • Export Citation
  • 9.

    Gribble PA, Robinson RH. Alterations in knee kinematics and dynamic stability associated with chronic ankle instability. J Athl Train. 2009;44(4):350–355. PubMed ID: 19593416 doi:10.4085/1062-6050-44.4.350

    • Search Google Scholar
    • Export Citation
  • 10.

    Gribble P, Robinson R. Differences in spatiotemporal landing variables during a dynamic stability task in subjects with CAI. Scand J Med Sci Sports. 2010;20(2002):1–10. doi:10.1111/j.1600-0838.2009.00899.x

    • Search Google Scholar
    • Export Citation
  • 11.

    Herb CC, Grossman K, Feger MA, Donovan L, Hertel J. Lower extremity biomechanics during a drop-vertical jump in participants with or without chronic ankle instability. J Athl Train. 2018;53(4):364–371. PubMed ID: 29667844 doi:10.4085/1062-6050-481-15

    • Search Google Scholar
    • Export Citation
  • 12.

    Brown CN, Padua DA, Marshall SW, Guskiewicz KM. Hip kinematics during a stop-jump task in patients with chronic ankle instability. J Athl Train. 2011;46(5):461–467. PubMed ID: 22488131

    • Search Google Scholar
    • Export Citation
  • 13.

    Söderman K, Alfredson H, Pietilä T, Werner S. Risk factors for leg injuries in female soccer players: a prospective investigation during one out-door season. Knee Surg Sports Traumatol Arthrosc. 2001;9(5):313–321. doi:10.1007/s001670100228

    • Search Google Scholar
    • Export Citation
  • 14.

    Kramer LC, Denegar CR, Buckley WE, Hertel J. Factors associated with anterior cruciate ligament injury: history in female athletes. J Sports Med Phys Fitness. 2007;47(4):446–454. PubMed ID: 18091686

    • Search Google Scholar
    • Export Citation
  • 15.

    Li Y, Ko J, Walker M, et al. Does chronic ankle instability influence knee biomechanics of females during inverted surface landings? Int J Sports Med. 2018;39(13):1009–1017. PubMed ID: 30227456 doi:10.1055/s-0044-102130

    • Search Google Scholar
    • Export Citation
  • 16.

    Li Y, Ko J, Walker MA, et al. Does chronic ankle instability influence lower extremity muscle activation of females during landing? J Electromyogr Kinesiol. 2018;38:81–87. PubMed ID: 29175719 doi:10.1016/j.jelekin.2017.11.009

    • Search Google Scholar
    • Export Citation
  • 17.

    Terada M, Pietrosimone B, Gribble PA. Individuals with chronic ankle instability exhibit altered landing knee kinematics: potential link with the mechanism of loading for the anterior cruciate ligament. Clin Biomech. 2014;29(10):1125–1130. doi:10.1016/j.clinbiomech.2014.09.014

    • Search Google Scholar
    • Export Citation
  • 18.

    Gerus P, Sartori M, Besier TF, et al. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces. J Biomech. 2013;46(16):2778–2786. PubMed ID: 24074941 doi:10.1016/j.jbiomech.2013.09.005

    • Search Google Scholar
    • Export Citation
  • 19.

    Peng Y, Zhang Z, Gao Y, et al. Concurrent prediction of ground reaction forces and moments and tibiofemoral contact forces during walking using musculoskeletal modelling. Med Eng Phys. 2018;52:31–40. PubMed ID: 29269224 doi:10.1016/j.medengphy.2017.11.008

    • Search Google Scholar
    • Export Citation
  • 20.

    Cleather DJ, Goodwin JE, Bull AMJ. Hip and knee joint loading during vertical jumping and push jerking. Clin Biomech. 2013;28(1):98–103. doi:10.1016/j.clinbiomech.2012.10.006

    • Search Google Scholar
    • Export Citation
  • 21.

    Gribble PA, Delahunt E, Bleakley C, et al. Selection criteria for patients with chronic ankle instability in controlled research: a position statement of the International Ankle Consortium. J Orthop Sports Phys Ther. 2013;43(8):585–591. doi:10.2519/jospt.2013.0303

    • Search Google Scholar
    • Export Citation
  • 22.

    Voskanian N. ACL Injury prevention in female athletes: review of the literature and practical considerations in implementing an ACL prevention program. Curr Rev Musculoskelet Med. 2013;6(2):158–163. PubMed ID: 23413024 doi:10.1007/s12178-013-9158-y

    • Search Google Scholar
    • Export Citation
  • 23.

    Dufek JS, Bates BT. Biomechanical factors associated with injury during landing in jump sports. Sports Med. 1991;12(5):326–337. doi:10.2165/00007256-199112050-00005

    • Search Google Scholar
    • Export Citation
  • 24.

    Kuni B, Mussler J, Kalkum E, Schmitt H, Wolf SI. Effect of kinesiotaping, non-elastic taping and bracing on segmental foot kinematics during drop landing in healthy subjects and subjects with chronic ankle instability. Physiotherapy. 2016;102(3):287–293. PubMed ID: 26422550 doi:10.1016/j.physio.2015.07.004

    • Search Google Scholar
    • Export Citation
  • 25.

    Gutierrez GM, Knight CA, Swanik CB, et al. Examining neuromuscular control during landings on a supinating platform in persons with and without ankle instability. Am J Sports Med. 2012;40:193–201. PubMed ID: 21917613 doi:10.1177/0363546511422323

    • Search Google Scholar
    • Export Citation
  • 26.

    Chen Q, Wortley M, Bhaskaran D, Milner CE, Zhang S. Is the inverted surface landing more suitable in evaluating ankle braces and ankle inversion perturbation? Clin J Sport Med. 2012;22:214–220. PubMed ID: 22382431 doi:10.1097/JSM.0b013e318248e5f6

    • Search Google Scholar
    • Export Citation
  • 27.

    Kulas AS, Schmitz RJ, Schultz SJ, Watson MA, Perrin DH. Energy absorption as a predictor of leg impedance in highly trained females. J Appl Biomech. 2006;22(3):177–185. PubMed ID: 17215549

    • Search Google Scholar
    • Export Citation
  • 28.

    Bell AL, Brand RA, Pedersen DR. Prediction of hip joint centre location from external landmarks. Hum Mov Sci. 1989;8(1):3–16. doi:10.1016/0167-9457(89)90020-1

    • Search Google Scholar
    • Export Citation
  • 29.

    Delp SL, Anderson FC, Arnold AS, et al. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 2007;54(11):1940–1950. PubMed ID: 18018689 doi:10.1109/TBME.2007.901024

    • Search Google Scholar
    • Export Citation
  • 30.

    Liu Y-S, Tsay T-S, Wang T-C. Muscles force and joints load simulation of bicycle riding using multibody models. Procedia Eng. 2011;13:81–87. doi:10.1016/j.proeng.2011.05.055

    • Search Google Scholar
    • Export Citation
  • 31.

    Dao TT, Marin F, Pouletaut P, Charleux F, Aufaure P, Ho Ba Tho MC. Estimation of accuracy of patient-specific musculoskeletal modelling: case study on a post polio residual paralysis subject. Comput Methods Biomech Biomed Engin. 2012;15(7):745–751. PubMed ID: 21491263 doi:10.1080/10255842.2011.558086

    • Search Google Scholar
    • Export Citation
  • 32.

    Guess TM, Stylianou AP, Kia M. Concurrent prediction of muscle and tibiofemoral contact forces during treadmill gait. J Biomech Eng. 2014;136(2):21032. doi:10.1115/1.4026359

    • Search Google Scholar
    • Export Citation
  • 33.

    Kia M, Stylianou AP, Guess TM. Evaluation of a musculoskeletal model with prosthetic knee through six experimental gait trials. Med Eng Phys. 2014;36(3):335–344. PubMed ID: 24418154 doi:10.1016/j.medengphy.2013.12.007

    • Search Google Scholar
    • Export Citation
  • 34.

    Stylianou AP, Guess TM, Kia M. Multibody muscle driven model of an instrumented prosthetic knee during squat and toe rise motions. J Biomech Eng. 2013;135(4):41008. doi:10.1115/1.4023982

    • Search Google Scholar
    • Export Citation
  • 35.

    Shin CS, Chaudhari AM, Andriacchi TP. The influence of deceleration forces on ACL strain during single-leg landing: a simulation study. J Biomech. 2007;40(5):1145–1152. PubMed ID: 16797556 doi:10.1016/j.jbiomech.2006.05.004

    • Search Google Scholar
    • Export Citation
  • 36.

    Yu B, Garrett WE. Mechanisms of non-contact ACL injuries. Br J Sports Med. 2007;41(suppl 1):i47–i51. doi:10.1136/bjsm.2007.037192

  • 37.

    Nunley R, Wright D, Renner J, Yu B, Garrett WE. Gender comparison of patellar tendon tibial shaft angle with weight bearing. Res Sports Med. 2003;11(3):173–185.

    • Search Google Scholar
    • Export Citation
  • 38.

    Laughlin WA, Weinhandl JT, Kernozek TW, Cobb SC, Keenan KG, O’connor KM. The effects of single-leg landing technique on ACL loading. J Biomech. 2011;44(10):1845–1851. PubMed ID: 21561623 doi:10.1016/j.jbiomech.2011.04.010

    • Search Google Scholar
    • Export Citation
  • 39.

    Kernozek TW, Ragan RJ. Estimation of anterior cruciate ligament tension from inverse dynamics data and electromyography in females during drop landing. Clin Biomech. 2008;23(10):1279–1286. doi:10.1016/j.clinbiomech.2008.08.001

    • Search Google Scholar
    • Export Citation
  • 40.

    D’Lima DD, Fregly BJ, Patil S, Steklov N, Colwell Jr CW. Knee joint forces: prediction, measurement, and significance. Proc Inst Mech Eng H. 2012;226(2):95–102. doi:10.1177/0954411911433372

    • Search Google Scholar
    • Export Citation
  • 41.

    Boden BP, Torg JS, Knowles SB, Hewett TE. Video analysis of anterior cruciate ligament injury: abnormalities in hip and ankle kinematics. Am J Sports Med. 2009;37(2):252–259. PubMed ID: 19182110 doi:10.1177/0363546508328107

    • Search Google Scholar
    • Export Citation
  • 42.

    Wall SJ, Rose DM, Sutter EG, Belkoff SM, Boden BP. The role of axial compressive and quadriceps forces in noncontact anterior cruciate ligament injury: a cadaveric study. Am J Sports Med. 2012;40(3):568–573. PubMed ID: 22174344 doi:10.1177/0363546511430204

    • Search Google Scholar
    • Export Citation
  • 43.

    Meyer EG, Haut RC. Anterior cruciate ligament injury induced by internal tibial torsion or tibiofemoral compression. J Biomech. 2008;41(16):3377–3383. PubMed ID: 19007932 doi:10.1016/j.jbiomech.2008.09.023

    • Search Google Scholar
    • Export Citation
  • 44.

    Weinhandl JT, Earl-Boehm JE, Ebersole KT, Huddleston WE, Armstrong BSR, O’Connor KM. Reduced hamstring strength increases anterior cruciate ligament loading during anticipated sidestep cutting. Clin Biomech. 2014;29(7):752–759. doi:10.1016/j.clinbiomech.2014.05.013

    • Search Google Scholar
    • Export Citation
  • 45.

    D’Lima DD, Steklov N, Patil S, Colwell CW. The Mark Coventry Award: in vivo knee forces during recreation and exercise after knee arthroplasty. Clin Orthop Relat Res. 2008;466(11):2605–2611. doi:10.1007/s11999-008-0345-x

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 221 221 95
Full Text Views 12 12 1
PDF Downloads 5 5 1