Ankle and Midfoot Power During Single-Limb Heel Rise in Healthy Adults

in Journal of Applied Biomechanics
View More View Less
  • 1 University of Rochester
  • 2 Rosalind Franklin University of Medicine and Science
  • 3 University of Rochester Medical Center
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Although the midfoot is recognized to have an important role in the successful performance of a single-limb heel rise, healthy heel rise performance remains primarily characterized by ankle function. The purpose of this study was to examine the contribution of midfoot region power to single-limb heel rise in healthy adults. Participants (N = 12) performed 20 single-limb heel rises. An electromagnetic motion capture system and a force plate were used to record 3-segment foot motion and ground reaction forces. Inverse dynamic calculations were performed to obtain ankle and midfoot region powers. These data were evaluated with descriptive statistics. A correlation was performed to evaluate the contribution of midfoot region power to heel height, as heel height is a clinical measure of heel-rise performance. The midfoot contributed power during single-limb heel rise (peak positive power: 0.5 [0.2] W·kg−1). Furthermore, midfoot peak power accounted for 36% of the variance in heel height (P = .04). As energy generating internal mechanisms, such as muscle activity, are attributed to power generation, midfoot tissue loading and muscle performance should be considered during clinical and modeling applications of the heel-rise task.

DiLiberto was with the School of Nursing, University of Rochester, Rochester, NY, USA; and is now with the Department of Physical Therapy, College of Health Professions, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA. Nawoczenski is with the Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, USA.

DiLiberto (frank.diliberto@rosalindfranklin.edu) is corresponding author.
  • 1.

    Winter DA. Biomechanics of Human Movement. New York, NY: John Wiley & Sons; 1979.

  • 2.

    Deschamps K, Matricali GA, Roosen P, et al. Comparison of foot segmental mobility and coupling during gait between patients with diabetes mellitus with and without neuropathy and adults without diabetes. Clin. 2013;28(7):813819. doi:10.1016/j.clinbiomech.2013.06.008

    • Search Google Scholar
    • Export Citation
  • 3.

    Neville C, Bucklin M, Ordway N, Lemley F. An ankle-foot orthosis with a lateral extension reduces forefoot abduction in subjects with stage II posterior tibial tendon dysfunction. J Orthop Sports Phys Ther. 2016;46(1):2633. PubMed ID: 26654572 doi:10.2519/jospt.2016.5618

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Rao S, Baumhauer JF, Tome J, Nawoczenski DA. Comparison of in vivo segmental foot motion during walking and step descent in patients with midfoot arthritis and matched asymptomatic control subjects. J Biomech. 2009;42(8):10541060. PubMed ID: 19409567 doi:10.1016/j.jbiomech.2009.02.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Abuzzahab FS, Harris GF, Kidder SM. A kinetic model of the foot and ankle. Gait Posture. 1997;5(2):148. doi:10.1016/S0966-6362(97)83366-8

  • 6.

    Bruening DA, Cooney KM, Buczek FL. Analysis of a kinetic multi-segment foot model part II: kinetics and clinical implications. Gait Posture. 2012;35(4):535540. PubMed ID: 22197290 doi:10.1016/j.gaitpost.2011.11.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Deschamps K, Eerdekens M, Desmet D, Matricali GA, Wuite S, Staes F. Estimation of foot joint kinetics in three and four segment foot models using an existing proportionality scheme: application in paediatric barefoot walking. J Biomech. 2017;61(61):168175. doi:10.1016/j.jbiomech.2017.07.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Dixon PC, Bohm H, Doderlein L. Ankle and midfoot kinetics during normal gait: a multi-segment approach. J Biomech. 2012;45(6):10111016. PubMed ID: 22304842 doi:10.1016/j.jbiomech.2012.01.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    MacWilliams BA, Cowley M, Nicholson DE. Foot kinematics and kinetics during adolescent gait. Gait Posture. 2003;17(3):214224. PubMed ID: 12770635 doi:10.1016/S0966-6362(02)00103-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Saraswat P, MacWilliams BA, Davis RB, D’Astous JL. Kinematics and kinetics of normal and planovalgus feet during walking. Gait Posture. 2014;39(1):339345. PubMed ID: 24001868 doi:10.1016/j.gaitpost.2013.08.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    DiLiberto FE, Nawoczenski DA, Houck J. Ankle and midfoot power during walking and stair ascent in healthy adults. J Appl Biomech. 2018;34(4):262269. PubMed ID: 29485306 doi:10.1123/jab.2017-0095

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Chimenti RL, Tome J, Hillin CD, Flemister AS, Houck J. Adult-acquired flatfoot deformity and age-related differences in foot and ankle kinematics during the single-limb heel-rise test. J Orthop Sports Phys Ther. 2014;44(4):283290. PubMed ID: 24568257 doi:10.2519/jospt.2014.4939

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Hastings MK, Woodburn J, Mueller MJ, Strube MJ, Johnson JE, Sinacore DR. Kinematics and kinetics of single-limb heel rise in diabetes related medial column foot deformity. Clin Biomech. 2014;29(9):10161022. doi:10.1016/j.clinbiomech.2014.08.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Houck JR, Neville C, Tome J, Flemister AS. Foot kinematics during a bilateral heel rise test in participants with stage II posterior tibial tendon dysfunction. J Orthop Sports Phys Ther. 2009;39(8):593603. PubMed ID: 19648723 doi:10.2519/jospt.2009.3040

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Blackwood CB, Yuen TJ, Sangeorzan BJ, Ledoux WR. The midtarsal joint locking mechanism. Foot Ankle Int. 2005;26(12):10741080. PubMed ID: 16390642 doi:10.1177/107110070502601213

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Erdemir A, Hamel AJ, Fauth AR, Piazza SJ, Sharkey NA. Dynamic loading of the plantar aponeurosis in walking. J Bone Joint Surg Am. 2004;86(3):546552. PubMed ID: 14996881 doi:10.2106/00004623-200403000-00013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Kelly LA, Lichtwark G, Cresswell AG. Active regulation of longitudinal arch compression and recoil during walking and running. J R Soc Interface. 2015;12(102):20141076. PubMed ID: 25551151 doi:10.1098/rsif.2014.1076

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    McKeon PO, Hertel J, Bramble D, Davis I. The foot core system: a new paradigm for understanding intrinsic foot muscle function. Br J Sports Med. 2015;49(5):290. PubMed ID: 24659509 doi:10.1136/bjsports-2013-092690

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    DiLiberto FE, Tome J, Baumhauer JF, Houck J, Nawoczenski DA. Individual metatarsal and forefoot kinematics during walking in people with diabetes mellitus and peripheral neuropathy. Gait Posture. 2015;42(4):435441. PubMed ID: 26253996 doi:10.1016/j.gaitpost.2015.07.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    DiLiberto FE, Tome J, Baumhauer JF, Quinn JR, Houck J, Nawoczenski DA. Multi-joint foot kinetics during walking in people with Diabetes Mellitus and peripheral neuropathy. J Biomech. 2015;48(13):36793684. doi:10.1016/j.jbiomech.2015.08.020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Umberger BR, Nawoczenski DA, Baumhauer JF. Reliability and validity of first metatarsophalangeal joint orientation measured with an electromagnetic tracking device. Clin Biomech. 1999;14(1):7476. doi:10.1016/S0268-0033(98)00052-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Rao S, Saltzman C, Yack HJ. Segmental foot mobility in individuals with and without diabetes and neuropathy. Clin Biomech. 2007;22(4):464471. doi:10.1016/j.clinbiomech.2006.11.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Bruening DA, Takahashi KZ. Partitioning ground reaction forces for multi-segment foot joint kinetics. Gait Posture. 2018;62:111116. PubMed ID: 29544155 doi:10.1016/j.gaitpost.2018.03.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Hayes A, Krippendorff K. Answering the call for a standard reliability measure for coding data. Commun Methods Meas. 2007;1(1):7789. doi:10.1080/19312450709336664

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Bruening DA, Cooney KM, Buczek FL. Analysis of a kinetic multi-segment foot model. Part I: model repeatability and kinematic validity. Gait Posture. 2012;35(4):529534. PubMed ID: 22421190 doi:10.1016/j.gaitpost.2011.10.363

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 722 722 20
Full Text Views 24 24 0
PDF Downloads 21 21 0