Joint Angle Coordination Strategies During Whole Body Rotations on a Single Lower-Limb Support: An Investigation Through Ballet Pirouettes

in Journal of Applied Biomechanics
View More View Less
  • 1 Denison University
  • 2 Berklee College of Music
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Despite the prevalence of turning maneuvers in everyday life, relatively little research has been conducted on joint angle kinematic coordination during whole-body rotations around a vertical axis. Ballet pirouettes provide an opportunity to study dynamically balanced, whole-body rotations on a single support and the potential to scale results to smaller angular displacements executed by general populations. The purpose of this study was to determine the supporting limb’s ankle, knee, hip, and pelvis-trunk joint angle excursions and kinematic coordination strategies utilized during the pirouette’s turn phase. Advanced dancers (n = 6) performed pirouettes while whole-body 3-dimensional kinematics were recorded. Group mean ankle ab/adduction excursion was significantly greater than all other excursions (P < .05). Principal components analysis was applied to joint angle time-series data (4 joints × 3 degrees of freedom = 12 variables). The first 4 principal components explained 92% (2%) of variance, confirming redundancy in joint angle data. Evolution of the data along the first principal component in successful pirouettes oscillated at the pirouette’s rotational frequency. Principal component eigenvector coefficients provided evidence of ankle–hip coordination, although specific coordination patterns varied between individuals and across trials. These results indicate that successful pirouettes are executed with continuous, oscillatory joint angle coordination patterns.

Lott is with the Department of Physics and Astronomy, Denison University, Granville, OH, USA. Xu is with the Department of Music Production, Technology, and Innovation, Berklee College of Music, Valencia, Spain.

Lott (lottm@denison.edu) is corresponding author.
  • 1.

    Glaister BC, Bernatz GC, Klute GK, Orendurff MS. Video task analysis of turning during activities of daily living. Gait Posture. 2007;25:289294. PubMed ID: 16730441 doi:10.1016/j.gaitpost.2006.04.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Hase K, Stein RB. Turning strategies during human walking. J Neurophysiol. 1999;81(6):29142922. PubMed ID: 10368408 doi:10.1152/jn.1999.81.6.2914

  • 3.

    Taylor MJD, Strike SC, Dabnichki P. Strategies used for unconstrained direction change during walking. Percept Mot Skills. 2006;102:576588. PubMed ID: 16826679 doi:10.2466/pms.102.2.576-588

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Taylor MJD, Dabnichki P, Strike SC. A three-dimensional biomechanical comparison between turning strategies during the stance phase of walking. Hum Mov Sci. 2005;24(4):558573. doi:10.1016/j.humov.2005.07.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Wang H, Zheng N. Knee rotation and loading during spin and step turn. Int J Sport Med. 2010;31:742746. doi:10.1055/s-0030-1261942

  • 6.

    Glaister BC, Orendurff MS, Schoen JA, Bernatz GC, Klute GK. Ground reaction forces and impulses during a transient turning maneuver. J Biomech. 2008;41:30903093. PubMed ID: 18804765 doi:10.1016/j.jbiomech.2008.07.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Zaferiou AM, Wilcox RR, Mcnitt-Gray JL. Modification of impulse generation during pique turns with increased rotational demands. Hum Mov Sci. 2016;47:220230. PubMed ID: 27038006 doi:10.1016/j.humov.2016.03.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Zaferiou AM, Flashner H, Wilcox RR, Mcnitt-Gray JL. Lower extremity control during turns initiated with and without hip external rotation. J Biomech. 2017;52:130139. PubMed ID: 28057348 doi:10.1016/j.jbiomech.2016.12.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Kim J, Wilson MA, Singhal K, Gamblin S, Suh C-Y, Kwon Y-H. Generation of vertical angular momentum in single, double, and triple-turn pirouette en dehors in ballet. Sport Biomech. 2014;13(3):215229. doi:10.1080/14763141.2014.933580

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Lott MB, Laws KL. The physics of toppling and regaining balance during a pirouette. J Dance Med Sci. 2012;16(4):167174.

  • 11.

    Lott MB. Translating the base of support: a mechanism for balance maintenance during rotations in dance. J Dance Med Sci. 2019;23(1):1725. doi:10.12678/1089-313X.23.1.17

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Xu D, Carlton LG, Rosengren KS. Anticipatory postural adjustments for altering direction during walking. J Mot Behav. 2004;36(3):316326. PubMed ID: 15262627 doi:10.3200/JMBR.36.3.316-326

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Sugano A, Laws K. Physical analysis as a foundation for pirouette training. Med Probl Perform Art. 2002;17:2932.

  • 14.

    Zaferiou AM, Wilcox RR, McNitt-Gray JL. Modification of impulse generation during pirouette turns with increased rotational demands. J Appl Biomech. 2016;32(5):425432. PubMed ID: 27046934 doi:10.1123/jab.2015-0314

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Ventura JD, Klute GK, Neptune RR. Individual muscle contributions to circular turning mechanics. J Biomech. 2015;48:10671074. PubMed ID: 25700608 doi:10.1016/j.jbiomech.2015.01.026

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Orendurff MS, Segal AD, Berge JS, Flick KC, Spanier D, Klute GK. The kinematics and kinetics of turning: limb asymmetries associated with walking a circular path. Gait Posture. 2006;23(1):106111. PubMed ID: 16311202 doi:10.1016/j.gaitpost.2004.12.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Hof AL, Gazendam MGJ, Sinke WE. The condition for dynamic stability. J Biomech. 2005;38(1):18. PubMed ID: 15519333 doi:10.1016/j.jbiomech.2004.03.025

  • 18.

    Winter DA. Human balance and posture control during standing and walking. Gait Posture. 1995;3:193214. doi:10.1016/0966-6362(96)82849-9

  • 19.

    Weaver TB, Glinka MN, Laing AC. Moving beyond quiet stance: applicability of the inverted pendulum model to stooping and crouching postures. J Biomech. 2014;47(14):35743579. PubMed ID: 25262878 doi:10.1016/j.jbiomech.2014.09.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Pinter IJ, Van Swigchem R, Van Soest AJ, Rozendaal LA. The dynamics of postural sway cannot be captured using a one-segment inverted pendulum model: a PCA on segment rotations during unperturbed stance. J Neurophysiol. 2008;100:31973208. PubMed ID: 18829852 doi:10.1152/jn.01312.2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Kilby MC, Molenaar PCM, Newell KM. Models of postural control: shared variance in joint and COM motions. PLoS One. 2015;10(5):e0126379. doi:10.1371/journal.pone.0126379

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Sasagawa S, Ushiyama J, Kouzaki M, Kanehisa H. Effect of the hip motion on the body kinematics in the sagittal plane during human quiet standing. Neurosci Lett. 2009;450(1):2731. PubMed ID: 19027828 doi:10.1016/j.neulet.2008.11.027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Zhang Y, Kiemel T, Jeka J. The influence of sensory information on two-component coordination during quiet stance. Gait Posture. 2007;26(2):263271. PubMed ID: 17046262 doi:10.1016/j.gaitpost.2006.09.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Versteeg CS, Ting LH, Allen JL. Hip and ankle responses for reactive balance emerge from varying priorities to reduce effort and kinematic excursion: a simulation study. J Biomech. 2016;49:32303237. PubMed ID: 27543251 doi:10.1016/j.jbiomech.2016.08.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Daffertshofer A, Lamoth CJC, Meijer OG, Beek PJ. PCA in studying coordination and variability: a tutorial. Clin Biomech. 2004;19(4):415428. doi:10.1016/j.clinbiomech.2004.01.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Deluzio KJ, Harrison AJ, Coffey N, Caldwell GE. Analysis of biomechanical waveform data. In: Robertson DGE, Caldwell GE, Hamill JE, Kamen G, Whittlesey SN, eds. Research Methods in Biomechanics. 2nd ed. Champaign, IL: Human Kinetics; 2014:317337.

    • Search Google Scholar
    • Export Citation
  • 27.

    Molenaar PCM, Wang Z, Newell KM. Compressing movement information via principal components analysis (PCA): contrasting outcomes from the time and frequency domains. Hum Mov Sci. 2013;32:14951511. PubMed ID: 24231287 doi:10.1016/j.humov.2013.07.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Laws KL. An analysis of turns in dance. Dance Res J. 1979;11(1/2):1219. doi:10.2307/1477841

  • 29.

    Sasagawa S, Shinya M, Nakazawa K. Interjoint dynamic interaction during constrained human quiet standing examined by induced acceleration analysis. J Neurophysiol. 2014;111(2):313322. PubMed ID: 24089399 doi:10.1152/jn.01082.2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Conti SF, Wong YS. Foot and ankle injuries in the dancer. J Dance Med Sci. 2001;5(2):4350.

All Time Past Year Past 30 Days
Abstract Views 562 562 62
Full Text Views 30 30 4
PDF Downloads 24 24 6