Effect of Mechanically Passive, Wearable Shoulder Exoskeletons on Muscle Output During Dynamic Upper Extremity Movements: A Computational Simulation Study

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Wearable passive (ie, spring powered) shoulder exoskeletons could reduce muscle output during motor tasks to help prevent or treat shoulder musculoskeletal disorders. However, most wearable passive shoulder exoskeletons have been designed and evaluated for static tasks, so it is unclear how they affect muscle output during dynamic tasks. The authors used a musculoskeletal model and Computed Muscle Control optimization to estimate muscle output with and without a wearable passive shoulder exoskeleton during 2 simulated dynamic tasks: abduction and upward reach. To an existing upper extremity musculoskeletal model, the authors added an exoskeleton model with 3-dimensional representations of the exoskeleton components, including a spring, cam wheel, force-transmitting shoulder cable, and wrapping surfaces that permitted the shoulder cable to wrap over the shoulder. The exoskeleton reduced net muscle-generated moments in positive shoulder elevation by 28% and 62% during the abduction and upward reach, respectively. However, muscle outputs (joint moments and muscle effort) were higher with the exoskeleton than without at some points of the movement. Muscle output was higher with the exoskeleton because the exoskeleton moment opposed the muscle-generated moment in some postures. The results of this study highlight the importance of evaluating muscle output for passive exoskeletons designed to support dynamic movements to ensure that the exoskeletons assist, rather than impede, movement.

Nelson, Hall, and Crouch are with the Department of Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee, Knoxville, TN, USA. Nelson is also with the Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA. Saul is with the Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA.

Crouch (dustin.crouch@utk.edu) is corresponding author.
  • 1.

    Bergstrom G, Aniansson A, Bjelle A, Grimby G, Lundgren-Lindquist B, Svanborg A. Functional consequences of joint impairment at age 79. Scand J Rehabil Med. 1985;17(4):183190. PubMed ID: 4081670

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Roach KE, Budiman-Mak E, Songsiridej N, Lertratanakul Y. Development of a shoulder pain and disability index. Arthritis Care Res. 1991;4(4):143149. PubMed ID: 11188601 doi:10.1002/art.1790040403

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Leclerc A, Chastang JF, Niedhammer I, Landre MF, Roquelaure Y, Study Group on Repetitive Work. Incidence of shoulder pain in repetitive work. Occup Environ Med. 2004;61(1):3944. PubMed ID: 14691271

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Svendsen SW, Gelineck J, Mathiassen SE, et al. Work above shoulder level and degenerative alterations of the rotator cuff tendons: a magnetic resonance imaging study. Arthritis Rheum. 2004;50(10):33143322. PubMed ID: 15476229 doi:10.1002/art.20495

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Svendsen SW, Bonde JP, Mathiassen SE, Stengaard-Pedersen K, Frich LH. Work related shoulder disorders: quantitative exposure-response relations with reference to arm posture. Occup Environ Med. 2004;61(10):844853. PubMed ID: 15377771 doi:10.1136/oem.2003.010637

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    van Rijn RM, Huisstede BM, Koes BW, Burdorf A. Associations between work-related factors and specific disorders of the shoulder—a systematic review of the literature. Scand J Work Environ Health. 2010;36(3):189201. PubMed ID: 20094690 doi:10.5271/sjweh.2895

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Nordqvist A, Petersson CJ. Incidence and causes of shoulder girdle injuries in an urban population. J Shoulder Elbow Surg. 1995;4(2):107112. PubMed ID: 7600160 doi:10.1016/S1058-2746(05)80063-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Nho SJ, Yadav H, Shindle MK, Macgillivray JD. Rotator cuff degeneration: etiology and pathogenesis. Am J Sports Med. 2008;36(5):987993. PubMed ID: 18413681 doi:10.1177/0363546508317344

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Luime JJ, Koes BW, Hendriksen IJ, et al. Prevalence and incidence of shoulder pain in the general population; a systematic review. Scand J Rheumatol. 2004;33(2):7381. PubMed ID: 15163107 doi:10.1080/03009740310004667

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Collins SH, Wiggin MB, Sawicki GS. Reducing the energy cost of human walking using an unpowered exoskeleton. Nature. 2015;522(7555):212215. PubMed ID: 25830889 doi:10.1038/nature14288

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Iwamuro BT, Cruz EG, Connelly LL, Fischer HC, Kamper DG. Effect of a gravity-compensating orthosis on reaching after stroke: evaluation of the therapy assistant WREX. Arch Phys Med Rehabil. 2008;89(11):21212128. PubMed ID: 18996241 doi:10.1016/j.apmr.2008.04.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Pirondini E, Coscia M, Marcheschi S, et al. Evaluation of the effects of the arm light exoskeleton on movement execution and muscle activities: a pilot study on healthy subjects. J Neuroeng Rehabil. 2016;13:9. PubMed ID: 26801620 doi:10.1186/s12984-016-0117-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Sommerich CM, McGlothlin JD, Marras WS. Occupational risk factors associated with soft tissue disorders of the shoulder: a review of recent investigations in the literature. Ergonomics. 1993;36(6):697717. PubMed ID: 8513776 doi:10.1080/00140139308967931

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Gopura RARC, Kiguchi K. Mechanical designs of active upper-limb exoskeleton robots: state-of-the-art and design difficulties. 2009 IEEE International Conference on Rehabilitation Robotics; 2009:178187.

    • Export Citation
  • 15.

    Perry JC, Rosen J, Burns S. Upper-limb powered exoskeleton design. IEEE/ASME Trans Mechatr. 2007;12(4):408417. doi:10.1109/TMECH.2007.901934

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Chien L, Chen DF, Lan CC. Design of an adaptive exoskeleton for safe robotic shoulder rehabilitation. 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM); 2016:282287.

    • Export Citation
  • 17.

    Bai S, Christensen S, Islam MRU. An upper-body exoskeleton with a novel shoulder mechanism for assistive applications. 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM); 2017:10411046.

    • Export Citation
  • 18.

    Papadopoulos E, Patsianis G. Design of an exoskeleton mechanism for the shoulder joint. 12th International Federation for the Promotion of Mechanism and Machine Science (IFToMM) World Congress; June 18–21, 2007.

    • Search Google Scholar
    • Export Citation
  • 19.

    Spada S, Ghibaudo L, Gilotta S, Gastaldi L, Pia Cavatorta M. Analysis of exoskeleton introduction in industrial reality: main issues and EAWS risk assessment. In: Goonetilleke R, Karwowski W, eds. Advances in Physical Ergonomics and Human Factors. Vol 602New York, NY: Springer; 2018:236244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Altenburger R, Scherly D, Stadler KS. Design of a passive, iso-elastic upper limb exoskeleton for gravity compensation. ROBOMECH J. 2016;3(1):12. doi:10.1186/s40648-016-0051-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Haumont T, Rahman T, Sample W, et al. Wilmington robotic exoskeleton: a novel device to maintain arm improvement in muscular disease. J Pediatr Orthop. 2011;31(5):e44e49. PubMed ID: 21654447 doi:10.1097/BPO.0b013e31821f50b5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Levitate AIRFRAME, Levitate Technologies, Inc. 2019; www.levitatetech.com.

  • 23.

    ShoulderX, US Bionics, Inc. 2019; www.suitx.com/shoulderx

  • 24.

    Paexo, Ottobock. 2019; www.ottobock.com/en/company/ottobock-industrials/paexo/

  • 25.

    EksoVest, Ekso Bionics. 2019.

  • 26.

    MATE, Comau S.p.A. 2019; www.comau.com/EN/MATE.

  • 27.

    Chen J, Lum PS. Spring operated wearable enhancer for arm rehabilitation (SpringWear) after stroke. Paper presented at: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Aug 16–20, 2016.

    • Export Citation
  • 28.

    Rahman T, Sample W, Jayakumar S, et al. Passive exoskeletons for assisting limb movement. J Rehabil Res Dev. 2006;43(5):583590. PubMed ID: 17123200 doi:10.1682/JRRD.2005.04.0070

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    van Engelhoven L, Poon N, Kazerooni H, Barr A, Rempel D, Harris-Adamson C. Evaluation of an adjustable support shoulder exoskeleton on static and dynamic overhead tasks. Paper presented at: Human Factors and Egonomics Society International Annual Meeting2018; Philadelphia, PA.

    • Export Citation
  • 30.

    Kim S, Nussbaum MA, Mokhlespour Esfahani MI, Alemi MM, Alabdulkarim S, Rashedi E. Assessing the influence of a passive, upper extremity exoskeletal vest for tasks requiring arm elevation: Part I—“Expected” effects on discomfort, shoulder muscle activity, and work task performance. Appl Ergon. 2018;70:315322. PubMed ID: 29525268 doi:10.1016/j.apergo.2018.02.025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Magermans DG, Chadwick EKJ, Veeger HEJ, van der Helm FCT. Requirements for upper extremity motions during activities of daily living. Clin Biomech. 2005;20:591599. doi:10.1016/j.clinbiomech.2005.02.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    McCann PD, Wootten ME, Kadaba MP, Bigliani LU. A kinematic and electromyographic study of shoulder rehabilitation exercises. Clin Orthop Relat Res. 1993;(288):179188.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Zhou L, Bai S, Andersen MS, Rasmussen J. Modeling and design of a spring-loaded, cable-driven, wearable exoskeleton for the upper extremity. Model Ident Control. 2015;36(3):167177. doi:10.4173/mic.2015.3.4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Kuechle DK, Newman SR, Itoi E, Morrey BF, An K-N. Shoulder muscle moment arms during horizontal flexion and elevation. J Shoulder Elbow Surg. 1997;6(5):429439. PubMed ID: 9356931 doi:10.1016/S1058-2746(97)70049-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Steele KM, Jackson RW, Shuman BR, Collins SH. Muscle recruitment and coordination with an ankle exoskeleton. J Biomech. 2017;59:5058. PubMed ID: 28623037 doi:10.1016/j.jbiomech.2017.05.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Sawicki GS, Ferris DP. Mechanics and energetics of level walking with powered ankle exoskeletons. J Exp Biol. 2008;211(pt 9):14021413. PubMed ID: 18424674 doi:10.1242/jeb.009241

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Farris DJ, Robertson BD, Sawicki GS. Elastic ankle exoskeletons reduce soleus muscle force but not work in human hopping. J Appl Physiol. 2013;115(5):579585. doi:10.1152/japplphysiol.00253.2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    van Dijk L, van der Sluis CK, van Dijk HW, Bongers RM. Task-oriented gaming for transfer to prosthesis use. IEEE Trans Neural Syst Rehabil Eng. 2016;24(12):13841394. PubMed ID: 26625419 doi:10.1109/TNSRE.2015.2502424

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Copaci D, Cano E, Moreno L, Blanco D. New design of a soft robotics wearable elbow exoskeleton based on shape memory alloy wire actuators. Appl Bionics Biomech. 2017;2017:111. PubMed ID: 29104424 doi:10.1155/2017/1605101

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Ferrati F, Bortoletto R, Pagello E. Virtual modelling of a real exoskeleton constrained to a human musculoskeletal model. In: NF Lepora, A Mura, HG Krapp, PFMJ Verschure, TJ Prescott, eds. Biomimetic and Biohybrid Systems. Living Machines 2013. Lecture Notes in Computer Science. Vol 8064. Berlin: Springer; 2013:96107.

    • Search Google Scholar
    • Export Citation
  • 41.

    Saul KR, Hu X, Goehler CM, et al. Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal model. Comput Methods Biomech Biomed Engin. 2015;18(13):14451458 . doi:10.1080/10255842.2014.916698

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Delp SL, Anderson FC, Arnold AS, et al. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 2007;54(11):19401950. PubMed ID: 18018689 doi:10.1109/TBME.2007.901024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Crouch DL, Santago AC, Plate JF, Li Z, Saul KR. Relationship between maximum isometric joint moment and functional task performance in patients with brachial plexus injury: a pilot study. Gait Posture. 2016;44:238244. PubMed ID: 27004665 doi:10.1016/j.gaitpost.2015.12.038

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Thelen DG, Anderson FC, Delp SL. Generating dynamic simulations of movement using computed muscle control. J Biomech. 2003;36:321328. PubMed ID: 12594980 doi:10.1016/S0021-9290(02)00432-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Thelen DG, Anderson FC. Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. J Biomech. 2006;39:11071115. PubMed ID: 16023125 doi:10.1016/j.jbiomech.2005.02.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Holzbaur KR, Delp SL, Gold GE, Murray WM. Moment-generating capacity of upper limb muscles in healthy adults. J Biomech. 2007;40(11):24422449. PubMed ID: 17250841 doi:10.1016/j.jbiomech.2006.11.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Vidt ME, Daly M, Miller ME, Davis CC, Marsh AP, Saul KR. Characterizing upper limb muscle volume and strength in older adults: a comparison with young adults. J Biomech. 2012;45(2):334341. PubMed ID: 22047782 doi:10.1016/j.jbiomech.2011.10.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Iridiastadi H, Nussbaum MA. Muscular fatigue and endurance during intermittent static efforts: effects of contraction level, duty cycle, and cycle time. Hum Factors. 2006;48(4):710720. PubMed ID: 17240719 doi:10.1518/001872006779166389

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Iannotti JP, Bernot MP, Kuhlman JR, Kelley MJ, Williams GR. Postoperative assessment of shoulder function: a prospective study of full-thickness rotator cuff tears. J Shoulder Elbow Surg. 1996;5(6):449457. PubMed ID: 8981270 doi:10.1016/S1058-2746(96)80017-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Mercer JL, Boninger M, Koontz A, Ren D, Dyson-Hudson T, Cooper R. Shoulder joint kinetics and pathology in manual wheelchair users. Clin Biomech. 2006;21(8):781789. doi:10.1016/j.clinbiomech.2006.04.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Larsson B, Sogaard K, Rosendal L. Work related neck-shoulder pain: a review on magnitude, risk factors, biochemical characteristics, clinical picture and preventive interventions. Best Pract Res Clin Rheumatol. 2007;21(3):447463. PubMed ID: 17602993 doi:10.1016/j.berh.2007.02.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Hortobagyi T, Finch A, Solnik S, Rider P, DeVita P. Association between muscle activation and metabolic cost of walking in young and old adults. J Gerontol. 2011;66A(5):541547. doi:10.1093/gerona/glr008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 53.

    Agarwal P, Neptune RR, Deshpande G. A simulation framework for virtual prototyping of robotic exoskeletons. J Biomech Eng. 2016;138(6):061004. PubMed ID: 27018453 doi:10.1115/1.4033177

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Farris DJ, Hicks JL, Delp SL, Sawicki GS. Musculoskeletal modelling deconstructs the paradoxical effects of elastic ankle exoskeletons on plantar-flexor mechanics and energetics during hopping. J Exp Biol. 2014;217(Pt 22):40184028. PubMed ID: 25278469 doi:10.1242/jeb.107656

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Prange GB, Kallenberg LAC, Jannink MJA, et al. Influence of gravity compensation on muscle activity during reach and retrieval in healthy elderly. J Electromyogr Kinesiol. 2009;19(2):e40e49. PubMed ID: 17911029 doi:10.1016/j.jelekin.2007.08.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    McFarland DC, Poppo MN, McCain EM, Saul KR. Spatial dependency of shoulder muscle demand during dynamic unimanual and bimanual pushing and pulling. Appl Ergon. 2018;73:199205. PubMed ID: 30098636 doi:10.1016/j.apergo.2018.07.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Nadon AL, Vidt ME, Chow AY, Dickerson CR. The spatial dependency of shoulder muscular demands during upward and downward exertions. Ergonomics. 2016;59(10):12941306. PubMed ID: 26912336 doi:10.1080/00140139.2015.1136697

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Arakelian V. Gravity compensation in robotics. Adv Robotics. 2016;30(2):7996. doi:10.1080/01691864.2015.1090334

  • 59.

    Schroeder JS, Perry JC. Development of a series wrapping cam mechanism for energy transfer in wearable arm support applications. Paper presented at: 2017 International Conference on Rehabilitation Robotics (ICORR); July 17–20, 2017.

    • PubMed
    • Export Citation
  • 60.

    Chew DXH, Wood KL, Tan U-X. Design of a passive self-regulating gravity compensator for variable payloads. ASME J Mech Des. 2019;141(10):102302. doi:10.1115/1.4043582

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Herder JL, Vrijlandt N, Antonides T, Cloosterman M, Mastenbroek PL. Principle and design of a mobile arm support for people with muscular weakness. J Rehabil Res Dev. 2006;43(5):591604. PubMed ID: 17123201 doi:10.1682/JRRD.2006.05.0044

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    van Dijk W, van der Kooij H. XPED2: a passive exoskeleton with artificial tendons. IEEE Rob Autom Mag. 2014;21(4):5661. doi:10.1109/MRA.2014.2360309

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 515 515 114
Full Text Views 31 31 8
PDF Downloads 28 28 9