Effect of Forefoot and Midfoot Bending Stiffness on Agility Performance and Foot Biomechanics in Soccer

in Journal of Applied Biomechanics

Click name to view affiliation

Daniel J. BrinkmannUniversity of Freiburg

Search for other papers by Daniel J. Brinkmann in
Current site
Google Scholar
PubMed
Close
*
,
Harald Koergeradidas AG

Search for other papers by Harald Koerger in
Current site
Google Scholar
PubMed
Close
*
,
Albert GollhoferUniversity of Freiburg

Search for other papers by Albert Gollhofer in
Current site
Google Scholar
PubMed
Close
*
, and
Dominic GehringUniversity of Freiburg

Search for other papers by Dominic Gehring in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Footwear bending stiffness is known to positively affect performance in agility maneuvers due to improved energy storage and propulsion based on a stiffer foot–shoe complex. However, the functional properties of the forefoot and midfoot differ. Therefore, the present study investigates the effect of the interface of longitudinal bending stiffness and the ratio of forefoot to midfoot bending stiffness on agility performance and foot biomechanics. A total of 18 male soccer players performed 2 agility tasks in footwear conditions that were systematically modified in forefoot and midfoot bending stiffness. Results revealed that higher longitudinal bending stiffness caused more foot exorotation at the initial ground contact (P < .05), less torsion (P < .001), and an anterior shift in the point of force application during push off (P = .01). In addition, the authors observed decreased forefoot bending (P < .05) and increased torsion (P < .01) in footwear with a higher forefoot–midfoot ratio. Finally, the agility performance was significantly impaired by 1.3% in the condition with the highest forefoot–midfoot ratio (P < .01). The high forefoot–midfoot ratio, that is, a stiff forefoot in combination with a soft midfoot, seemed to shift the flex line from anterior to posterior that may explain the performance impairment.

Brinkmann, Gollhofer, and Gehring are with the Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany. Koerger is with Advanced Creation – Testing, adidas AG, Herzogenaurach, Germany.

Brinkmann (daniel.brinkmann@sport.uni-freiburg.de) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Sheppard J, Young W. Agility literature review: classifications, training and testing. J Sports Sci. 2006;24(9):919932. PubMed ID: 16882626 doi:10.1080/02640410500457109

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Bloomfield J, Polman R, O’Donoghue P. Physical demands of different positions in FA premier league soccer. J Sports Sci Med. 2007;6(1):6372. doi:10.1111/j.1600-0838.1996.tb00073.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Brughelli M, Cronin J, Levin G, Chaouachi A. Understanding change of direction in sport: a review of resistance training studies. Sports Med. 2008;38(12):10451063. doi:10.2165/00007256-200838120-00007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Dos’santos T, Thomas C, Comfort P, Jones PA. The effect of angle and velocity on change of direction biomechanics: an angle-velocity trade-off. Sports Med. 2018;48(10):22352253. doi:10.1007/s40279-018-0968-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Stefanyshyn DJ, Fusco C. Increased shoe bending stiffness increases sprint performance. Sports Biomech. 2004;3(1):5566. doi:10.1080/14763140408522830

  • 6.

    Tinoco N, Bourgit D, Morin JB. Influence of midsole metatarsophalangeal stiffness on jumping and cutting movement abilities. Proc Inst Mech Eng Part P J Sport Eng Technol. 2010;224(3):209217.

    • Search Google Scholar
    • Export Citation
  • 7.

    Worobets J, Wannop JW. Influence of basketball shoe mass, outsole traction, and forefoot bending stiffness on three athletic movements. Sports Biomech. 2015;14(3):351360. doi:10.1080/14763141.2015.1084031

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Roy J-PR, Stefanyshyn DJ. Shoe midsole longitudinal bending stiffness and running economy, joint energy, and EMG. Med Sci Sports Exerc. 2006;38(3):562569. doi:10.1249/01.mss.0000193562.22001.e8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Hoogkamer W, Kipp S, Frank JH, Farina EM, Luo G, Kram R. A comparison of the energetic cost of running in marathon racing shoes. Sports Med. 2018;48(4):10091019. doi:10.1007/s40279-017-0811-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Nigg BM, Stefanyshyn DJ, Denoth J. Mechanical considerations of work and energy. In: Nigg BM, MacIntosh BR, Mester J, eds. Biomechanics and Biology of Movement. Champaign, IL: Human Kinetics; 2000:518.

    • Search Google Scholar
    • Export Citation
  • 11.

    Park S-K, Lam W-K, Yoon S, Lee K-K, Ryu J. Effects of forefoot bending stiffness of badminton shoes on agility, comfort perception and lower leg kinematics during typical badminton movements. Sports Biomech. 2017;16(3):374386. doi:10.1080/14763141.2017.1321037

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Stefanyshyn DJ, Nigg BM. Influence of midsole bending stiffness on joint energy and jump height performance. Med Sci Sports Exerc. 2000;32(2):471476. doi:10.1097/00005768-200002000-00032

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Willwacher S, König M, Potthast W, Brüggemann G-P. Does specific footwear facilitate energy storage and return at the metatarsophalangeal joint in running? J Appl Biomech. 2013;29(5):583592. PubMed ID: 24203172 doi:10.1123/jab.29.5.583

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Holowka NB, Lieberman DE. Rethinking the evolution of the human foot: insights from experimental research. J Exp Biol. 2018;221(17):jeb174425. doi:10.1242/jeb.174425

  • 15.

    Hicks JH. The mechanics of the foot. II. The plantar aponeurosis and the arch. J Anat. 1954;88:2531.

  • 16.

    Kelly LA, Cresswell AG, Racinais S, Whiteley R, Lichtwark G. Intrinsic foot muscles have the capacity to control deformation of the longitudinal arch. J R Soc Interface. 2014;11(93):20131188. PubMed ID: 24478287 doi:10.1098/rsif.2013.1188

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Hoogkamer W, Kram R, Arellano CJ. How biomechanical improvements in running economy could break the 2-hour marathon barrier. Sports Med. 2017;47(9):17391750. doi:10.1007/s40279-017-0708-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Moore IS, Jones AM, Dixon SJ. Reduced oxygen cost of running is related to alignment of the resultant GRF and leg axis vector: a pilot study. Scand J Med Sci Sports. 2016;26(7):809815. doi:10.1111/sms.12514

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Oleson M, Adler D, Goldsmith P. A comparison of forefoot stiffness in running and running shoe bending stiffness. J Biomech. 2005;38(9):18861894. PubMed ID: 16023477 doi:10.1016/j.jbiomech.2004.08.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Flores N, Delattre N, Berton E, Rao G. Effects of shoe energy return and bending stiffness on running economy and kinetics. Footwear Sci. 2017;9(suppl 1):S11S13. doi:10.1080/19424280.2017.1313894

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Carrier DR, Heglund NC, Earls KD. Variable gearing during locomotion in the human musculoskeletal system. Science. 1994;265(5172):651653. PubMed ID: 8036513 doi:10.1126/science.8036513

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Willwacher S, König M, Braunstein B, Goldmann JP, Brüggemann GP. The gearing function of running shoe longitudinal bending stiffness. Gait Posture. 2014;40(3):386390. PubMed ID: 24882222 doi:10.1016/j.gaitpost.2014.05.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Noghondar FA, Bressel E. Effect of shoe insole density on impact characteristics and performance during a jump-landing task. Footwear Sci. 2017;9(2):95101. doi:10.1080/19424280.2017.1305003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Wannop JW, Killick A, Madden R, Stefanyshyn DJ. The influence of gearing footwear on running biomechanics. Footwear Sci. 2017;9(2):111119. doi:10.1080/19424280.2017.1342705

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Oh K, Park S. The bending stiffness of shoes is beneficial to running energetics if it does not disturb the natural MTP joint flexion. J Biomech. 2017;53:127135. PubMed ID: 28168959 doi:10.1016/j.jbiomech.2017.01.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Oh K, Park S. An optimal bending stiffness of running shoes to improve running efficiency. Footwear Sci. 2017;9(suppl 1):S139S141. doi:10.1080/19424280.2017.1314383

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Smith G, Lake M, Sterzing T, Milani T. The influence of sprint spike bending stiffness on sprinting performance and metatarsophalangeal joint function. Footwear Sci. 2016;8(2):109118. doi:10.1080/19424280.2016.1143038

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Ford KR, Taylor JB, Baellow AL, Arpante AK, Wright KE, Nguyen A-D. Effects of plate stiffness on first metatarsophalangeal joint motion during unanticipated cutting and resisted sled pushing in football players. Footwear Sci. 2016;8(2):7582. doi:10.1080/19424280.2016.1175518

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Willwacher S, Kurz M, Menne C, Schrödter E, Brüggemann G-P. Biomechanical response to altered footwear longitudinal bending stiffness in the early acceleration phase of sprinting. Footwear Sci. 2016;8(2):99108. doi:10.1080/19424280.2016.1144653

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Menne C, Brüggemann G-P, Willwacher S. The influence of sole longitudinal bending stiffness on push off biomechanics in full effort linear acceleration. In: Ae M, Enomoto Y, Fujii N, Takagi H, eds. 34th International Conference of Biomechanics in Sport; July 18–22, 2016; Tsukuba, Japan. Konstanz, Germany: International Society of Biomechanics in Sports. 2016:438441.

    • Search Google Scholar
    • Export Citation
  • 31.

    Takahashi KZ, Gross MT, Van Werkhoven H, Piazza SJ, Sawicki GS. Adding stiffness to the foot modulates soleus force-velocity behaviour during human walking. Sci Rep. 2016;6:29870. PubMed ID: 27417976 doi:10.1038/srep29870

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Leardini A, Benedetti MG, Berti L, Bettinelli D, Nativo R, Giannini S. Rear-foot, mid-foot and fore-foot motion during the stance phase of gait. Gait Posture. 2007;25(3):453462. PubMed ID: 16965916 doi:10.1016/j.gaitpost.2006.05.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Nester CJ, Liu AM, Ward E, et al. In vitro study of foot kinematics using a dynamic walking cadaver model. J Biomech. 2007;40(9):19271937. PubMed ID: 17081548 doi:10.1016/j.jbiomech.2006.09.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Vienneau J, Nigg SR, Tomaras EK, Enders H, Nigg BM. Soccer shoe bending stiffness significantly alters game-specific physiology in a 25-minute continuous field-based protocol. Footwear Sci. 2016;8(2):8390. doi:10.1080/19424280.2016.1147616

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Chen CH, Tu KH, Liu C, Shiang TY. Effects of forefoot bending elasticity of running shoes on gait and running performance. Hum Mov Sci. 2014;38:163172. PubMed ID: 25457415 doi:10.1016/j.humov.2014.10.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Stefanyshyn DJ, Wannop JW. The influence of forefoot bending stiffness of footwear on athletic injury and performance. Footwear Sci. 2016;8(2):5163. doi:10.1080/19424280.2016.1144652

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Fraser S, Harland A, Smith P, Lucas T. A study of football footwear bending stiffness. Procedia Eng. 2014;72:315320. doi:10.1016/j.proeng.2014.06.047

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    David S, Müller R, Komnik I, Potthast W. Rotation and braking strategies to perform a successful cutting maneuver. In: Potthast W, Niehoff A, David S, eds. 35th International Conference of Biomechanics in Sport; June 14–18,  2017; Cologne, Germany. Northern Michigan, MI: International Society of Biomechanics in Sports. 2017:8588.

    • Search Google Scholar
    • Export Citation
  • 39.

    Fleischmann J, Gehring D, Mornieux G, Gollhofer A. Load-dependent movement regulation of lateral stretch shortening cycle jumps. Eur J Appl Physiol. 2010;110:177187. PubMed ID: 20443023 doi:10.1007/s00421-010-1476-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum; 1988.

  • 41.

    Willwacher S, Schuck F, Fischer K, Brüggemann G-P. Is it all about the shoe? Biomechanical response to minimalistic and conventional footwear in habitually shod and unshod runners using different running techniques. Footwear Sci. 2015;7(suppl 1):S121S122. doi:10.1080/19424280.2015.1038642

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Graf E, Wannop JW, Schlarb H, Stefanyshyn DJ. Effect of torsional stiffness on biomechanical variables of the lower extremity during running. Footwear Sci. 2017;9(1):18. doi:10.1080/19424280.2016.1271365

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Graf ES, Stefanyshyn DJ. The effect of footwear torsional stiffness on lower extremity kinematics and kinetics during lateral cutting movements. Footwear Sci. 2013;5(2):101109. doi:10.1080/19424280.2013.789561

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Kelly LA, Cresswell AG, Farris DJ. The energetic behaviour of the human foot across a range of running speeds. Sci Rep. 2018;8:10576. PubMed ID: 30002498 doi:10.1038/s41598-018-28946-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Fernández PJ, Holowka NB, Demes B, Jungers WL. Form and function of the human and chimpanzee forefoot: implications for early hominin bipedalism. Sci Rep. 2016;6:30532. doi:10.1038/srep30532

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    McDonald KA, Stearne SM, Alderson JA, North I, Pires NJ, Rubenson J. The role of arch compression and metatarsophalangeal joint dynamics in modulating plantar fascia strain in running. PLoS One. 2016;11(4):e0152602. PubMed ID: 27054319 doi:10.1371/journal.pone.0152602

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Stearne SM, McDonald KA, Alderson JA, North I, Oxnard CE, Rubenson J. The foot’s arch and the energetics of human locomotion. Sci Rep. 2016;6:19403. PubMed ID: 26783259 doi:10.1038/srep19403

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Forrester SE. Selecting the number of trials in experimental biomechanics studies. Int Biomech. 2015;2(1):6272. doi:10.1080/23335432.2015.1049296

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Arnold JB, Bishop C. Quantifying foot kinematics inside athletic footwear: a review. Footwear Sci. 2013;5(1):5562. doi:10.1080/19424280.2012.735257

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Sinclair J, Taylor P, Hebron J, Chockalingam N. Differences in multi-segment foot kinematics measured using skin and shoe mounted markers. Foot Ankle Online J. 2014;7(2):7.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3775 1123 153
Full Text Views 165 32 1
PDF Downloads 157 42 1