Lower Limb Joint Kinetics During Walking in Middle-Aged Runners With Low or High Lifetime Running Exposure

in Journal of Applied Biomechanics
View More View Less
  • 1 The University of Memphis
  • 2 East Carolina University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Aging is associated with a distal-to-proximal shift in joint kinetics during walking. This plasticity of gait is amplified rather than attenuated in old adults with high physical capacity. Because running is associated with greater kinetic demands at the ankle, older individuals with more versus less lifetime running exposure may retain a larger proportion of their ankle kinetics. The purpose of the study was to compare lower-extremity joint kinetics during walking between middle-aged runners with high and low lifetime running exposure. Eighteen middle-aged runners (9 per group) participated. Joint kinetics were calculated from kinematic and ground reaction force data during overground walking at 1.3 m·s−1 and compared between groups. High exposure runners produced 50% greater positive hip work (P = .03; Cohen d = 1.02) during walking compared with low exposure runners, but ankle kinetics were not different between groups. No other differences in joint kinetics or kinematics were observed between groups. These findings suggest that the age-related increase in hip joint kinetics during walking could be a compensatory gait strategy that is not attenuated by lifetime running exposure alone. Finally, the amount of lifetime running exposure did not affect ankle kinetics during walking in middle-aged runners.

Melaro, Majaj, Powell, and Paquette are with the School of Health Studies, The University of Memphis, Memphis, TN, USA. DeVita is with the Department of Kinesiology, College of Health and Human Performance, East Carolina University, Greenville, NC, USA.

Paquette (mrpqette@memphis.edu) is corresponding author.
  • 1.

    Melton LJ, Khosla S, Crowson CS, O’Connor MK, O’Fallon WM, Riggs BL. Epidemiology of sarcopenia. J Am Geriatr Soc. 2000;48(6):625630. PubMed ID: 10855597 doi:10.1111/j.1532-5415.2000.tb04719.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Lynch NA, Metter EJ, Lindle RS, et al. Muscle quality. I. Age-associated differences between arm and leg muscle groups. J Appl Physiol. 1999;86(1):188194. doi:10.1152/jappl.1999.86.1.188

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Reid KF, Pasha E, Doros G, et al. Longitudinal decline of lower extremity muscle power in healthy and mobility-limited older adults: influence of muscle mass, strength, composition, neuromuscular activation and single fiber contractile properties. Eur J Appl Physiol. 2014;114(1):2939. PubMed ID: 24122149 doi:10.1007/s00421-013-2728-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Oda K. Age changes of motor innervation and acetylcholine receptor distribution on human skeletal muscle fibres. J Neurol Sci. 1984;66(2/3):327338. doi:10.1016/0022-510X(84)90021-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Verdijk LB, Koopman R, Schaart G, Meijer K, Savelberg HH, van Loon LJ. Satellite cell content is specifically reduced in type II skeletal muscle fibers in the elderly. Am J Physiol Endocrinol Metab. 2007;292(1):E151E157. PubMed ID: 16926381 doi:10.1152/ajpendo.00278.2006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Bassey EJ, Bendall MJ, Pearson M. Muscle strength in the triceps surae and objectively measured customary walking activity in men and women over 65 years of age. Clin Sci. 1988;74(1):8589. doi:10.1042/cs0740085

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Bendall MJ, Bassey EJ, Pearson MB. Factors affecting walking speed of elderly people. Age Ageing. 1989;18(5):327332. PubMed ID: 2603841 doi:10.1093/ageing/18.5.327

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Fiatarone MA, Marks EC, Ryan ND, Meredith CN, Lipsitz LA, Evans WJ. High-intensity strength training in nonagenarians. Effects on skeletal muscle. JAMA. 1990;263(22):30293034. PubMed ID: 2342214 doi:10.1001/jama.1990.03440220053029

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Buchner DM, Larson EB, Wagner EH, Koepsell TD, de Lateur BJ. Evidence for a non-linear relationship between leg strength and gait speed. Age Ageing. 1996;25(5):386391. PubMed ID: 8921145 doi:10.1093/ageing/25.5.386

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Buchner DM, Cress ME, Esselman PC, et al. Factors associated with changes in gait speed in older adults. J Gerontol A Biol Sci Med Sci. 1996;51(6):M297M302. PubMed ID: 8914502 doi:10.1093/gerona/51A.6.M297

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Bohannon RW. Comfortable and maximum walking speed of adults aged 20–79 years: reference values and determinants. Age Ageing. 1997;26(1):1519. PubMed ID: 9143432 doi:10.1093/ageing/26.1.15

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Himann JE, Cunningham DA, Rechnitzer PA, Paterson DH. Age-related changes in speed of walking. Med Sci Sports Exerc. 1988;20(2):161166. PubMed ID: 3367751 doi:10.1249/00005768-198820020-00010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    DeVita P, Hortobagyi T. Age causes a redistribution of joint torques and powers during gait. J Appl Physiol. 2000;88(5):18041811. doi:10.1152/jappl.2000.88.5.1804

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Judge JO, Davis RB, Ounpuu S. Step length reductions in advanced age: the role of ankle and hip kinetics. J Gerontol A Biol Sci Med Sci. 1996;51(6):M303M312. PubMed ID: 8914503 doi:10.1093/gerona/51A.6.M303

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Clémençon M, Hautier CA, Rahmani A, Cornu C, Bonnefoy M. Potential role of optimal velocity as a qualitative factor of physical functional performance in women aged 72 to 96 years. Arch Phys Med Rehabil. 2008;89(8):15941599. doi:10.1016/j.apmr.2007.11.061

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Cesari M, Kritchevsky SB, Penninx BW, et al. Prognostic value of usual gait speed in well-functioning older people—results from the health, aging and body composition study. J Am Geriatr Soc. 2005;53(10):16751680. PubMed ID: 16181165 doi:10.1111/j.1532-5415.2005.53501.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Cesari M, Kritchevsky SB, Newman AB, et al. Added value of physical performance measures in predicting adverse health-related events: results from the health, aging and body composition study. J Am Geriatr Soc. 2009;57(2):251259. PubMed ID: 19207142 doi:10.1111/j.1532-5415.2008.02126.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Studenski S, Perera S, Patel K, et al. Gait speed and survival in older adults. JAMA. 2011;305(1):5058. PubMed ID: 21205966 doi:10.1001/jama.2010.1923

  • 19.

    Stamatakis E, Kelly P, Strain T, Murtagh EM, Ding D, Murphy MH. Self-rated walking pace and all-cause, cardiovascular disease and cancer mortality: individual participant pooled analysis of 50 225 walkers from 11 population British cohorts. Br J Sports Med. 2018;52(12):761768. PubMed ID: 29858463 doi:10.1136/bjsports-2017-098677

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Huang TW, Shorter KA, Adamczyk PG, Kuo AD. Mechanical and energetic consequences of reduced ankle plantar-flexion in human walking. J Exp Biol. 2015;218(pt 22):35413550. PubMed ID: 26385330 doi:10.1242/jeb.113910.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Hortobágyi T, Finch A, Solnik S, Rider P, DeVita P. Association between muscle activation and metabolic cost of walking in young and old adults. J Gerontol A Biol Sci Med Sci. 2011;66(5):541547. doi:10.1093/gerona/glr008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Hepple RT, Rice CL. Innervation and neuromuscular control in ageing skeletal muscle. J Physiol. 2016;594(8):19651978. PubMed ID: 26437581 doi:10.1113/JP270561

  • 23.

    Lexell J, Downham DY. The occurrence of fibre-type grouping in healthy human muscle: a quantitative study of cross-sections of whole vastus lateralis from men between 15 and 83 years. Acta Neuropathol. 1991;81(4):377381. PubMed ID: 2028741 doi:10.1007/BF00293457

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Kulmala J, Korhonen M, Kuitunen S, et al. Which muscles compromise human locomotor performance with age? J R Soc Interface. 2014;11(100):20140858. doi:10.1098/rsif.2014.0858

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Savelberg HH, Verdijk LB, Willems PJ, Meijer K. The robustness of age-related gait adaptations: can running counterbalance the consequences of ageing? Gait Posture. 2007;25(2):259266. PubMed ID: 16701997 doi:10.1016/j.gaitpost.2006.04.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Kuhman D, Willson J, Mizelle JC, DeVita P. The relationships between physical capacity and biomechanical plasticity in old adults during level and incline walking. J Biomech. 2018;69:9096. PubMed ID: 29395227 doi:10.1016/j.jbiomech.2018.01.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Buddhadev HH, Martin PE. Effects of age and physical activity status on redistribution of joint work during walking. Gait Posture. 2016;50:131136. PubMed ID: 27607304 doi:10.1016/j.gaitpost.2016.08.034

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Franz J, Maletis M, Kram R. Real-time feedback enhances forward propulsion during walking in old adults. Clin Biomech. 2014;29(1):6874. doi:10.1016/j.clinbiomech.2013.10.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Franz J, Kram R. Advanced age affects the individual leg mechanics of level, uphill, and downhill walking. J Biomech. 2013;46:535540. PubMed ID: 23122946 doi:10.1016/j.jbiomech.2012.09.032

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Krupenevich R, Miller R. Habitual endurance running does not mitigate the characteristic age-related differenced in gait kinetics. Paper presented at: ISB-ASB Joint Meeting; August 2, 2019. Calgary, AB.

    • Export Citation
  • 31.

    Jin L, Hahn M. Comparison of lower extremity joint mechanics between healthy active young and middle age people in walking and running gait. Sci Rep. 2019;9(1):5568. PubMed ID: 30944360 doi:10.1038/s41598-019-41750-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Lazarus NR, Harridge SDR. Declining performance of master athletes: silhouettes of the trajectory of healthy human ageing? J Physiol. 2017;595(9):29412948. PubMed ID: 27808406 doi:10.1113/JP272443

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Crimmins EM, Beltrán-Sánchez H. Mortality and morbidity trends: is there compression of morbidity? J Gerontol B Psychol Sci Soc Sci. 2011;66(1):7586. PubMed ID: 21135070 doi:10.1093/geronb/gbq088

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Daviglus ML, Liu K, Yan LL, et al. Relation of body mass index in young adulthood and middle age to Medicare expenditures in older age. JAMA. 2004;292(22):27432749. PubMed ID: 15585734 doi:10.1001/jama.292.22.2743

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Fries JF. Aging, natural death, and the compression of morbidity. 1980. Bull World Health Organ. 2002;80(3):245250. PubMed ID: 11984612

  • 36.

    Weinhandl JT, O’Connor KM. Assessment of a greater trochanter-based method of locating the hip joint center. J Biomech. 2010;43(13):26332636. PubMed ID: 20605153 doi:10.1016/j.jbiomech.2010.05.023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Hopkins W. A scale of magnitudes for effect statistics. New View Stat. 2002;502:411.

  • 38.

    Faulkner J, Brooks S. Age-related immobility: the roles of weakness, fatigue, injury and repair. In: Buckwalter A, ed. Musculoskeletal Aging: Impact on Mobility. Rosemont, IL: American Academy of Orthopaedic Surgeons; 1993:187194.

    • Search Google Scholar
    • Export Citation
  • 39.

    Skelton DA, Greig CA, Davies JM, Young A. Strength, power and related functional ability of healthy people aged 65–89 years. Age Ageing. 1994;23(5):371377. PubMed ID: 7825481 doi:10.1093/ageing/23.5.371

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Candow D, Chilibeck P. Differences in size, strength, and power of upper and lower body muscle groups in young and older men. J Gerontol A Biol Sci Med Sci. 2005;60(2):148156. PubMed ID: 15814855 doi:10.1093/gerona/60.2.148

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Thom JM, Morse CI, Birch KM, Narici MV. Influence of muscle architecture on the torque and power-velocity characteristics of young and elderly men. Eur J Appl Physiol. 2007;100(5):613619. PubMed ID: 17530274 doi:10.1007/s00421-007-0481-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Harbo T, Brincks J, Andersen H. Maximal isokinetic and isometric muscle strength of major muscle groups related to age, body mass, height, and sex in 178 healthy subjects. Eur J Appl Physiol. 2012;112(1):267275. PubMed ID: 21537927 doi:10.1007/s00421-011-1975-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Browne M, Franz J. More push from your push-off: joint-level modifications to modulate propulsive forces in old age. PLoS One. 2018;13(8):e0201407. PubMed ID: 30089143 doi:10.1371/journal.pone.0201407

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Beijersbergen CMI, Granacher U, Gäbler M, Devita P, Hortobágyi T. Power training-induced increases in muscle activation during gait in old adults. Med Sci Sports Exerc. 2017;49(11):21982025. PubMed ID: 28598910 doi:10.1249/MSS.0000000000001345

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Waters RL, Hislop HJ, Perry J, Thomas L, Campbell J. Comparative cost of walking in young and old adults. J Orthop Res. 1983;1(1):7376. PubMed ID: 6679578 doi:10.1002/jor.1100010110

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Waters R, Lunsford B, Perry J, Byrd R. Energy-speed relationship of walking: standard tables. J Orthop Res. 1988;6(2):215222. PubMed ID: 3343627 doi:10.1002/jor.1100060208

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Mian OS, Thom JM, Ardigò LP, Narici MV, Minetti AE. Metabolic cost, mechanical work, and efficiency during walking in young and older men. Acta Physiol. 2006;186(2):127139. doi:10.1111/j.1748-1716.2006.01522.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Ortega JD, Beck ON, Roby JM, Turney AL, Kram R. Running for exercise mitigates age-related deterioration of walking economy. PLoS One. 2014;9(11):e113471. PubMed ID: 25411850 doi:10.1371/journal.pone.0113471

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Beijersbergen CMI, Granacher U, Gäbler M, DeVita P, Hortobágyi T. Hip mechanics underlie lower extremity power training-induced increase in old adults’ fast gait velocity: the Potsdam Gait Study (POGS). Gait Posture. 2017;52:338344. PubMed ID: 28043055 doi:10.1016/j.gaitpost.2016.12.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Beijersbergen CM, Granacher U, Vandervoort AA, DeVita P, Hortobágyi T. The biomechanical mechanism of how strength and power training improves walking speed in old adults remains unknown. Ageing Res Rev. 2013;12(2):618627. PubMed ID: 23501431 doi:10.1016/j.arr.2013.03.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Kobayashi H, Kakihana W, Kimura T. Combined effects of age and gender on gait symmetry and regularity assessed by autocorrelation of trunk acceleration. J Neuroeng Rehabil. 2014;11(1):109. doi:10.1186/1743-0003-11-109

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Frimenko R, Goodyear C, Bruening D. Interactions of sex and aging on spatiotemporal metrics in non-pathological gait: a descriptive meta-analysis. Physiotherapy. 2015;101(3):266272. PubMed ID: 25702092 doi:10.1016/j.physio.2015.01.003

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 479 479 98
Full Text Views 39 39 7
PDF Downloads 23 23 5