Timing of Strain Response of the ACL and MCL Relative to Impulse Delivery During Simulated Landings Leading up to ACL Failure

in Journal of Applied Biomechanics
View More View Less
  • 1 Mayo Clinic
  • 2 Sparta Science
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Anterior cruciate ligament (ACL) injury videos estimate that rupture occurs within 50 milliseconds of initial contact, but are limited by imprecise timing and nondirect data acquisition. The objective of this study was to precisely quantify the timing associated with ligament strain during simulated landing and injury events. The hypotheses tested were that the timing of peak strain following initial contact would differ between ligaments and that peak strain timing would be independent of the injury-risk profile emulated during simulated landing. A mechanical impact simulator was used to perform landing simulations based on various injury-risk profiles that were applied to each specimen in a block-randomized order. The ACL and medial collateral ligament were instrumented with strain gauges that recorded continuously. The data from 35 lower-extremity specimens were included for analysis. Analysis of variance and Kruskal–Wallis tests were used to determine the differences between timing and profiles. The mean time to peak strain was 53 (24) milliseconds for the ACL and 58 (35) milliseconds for the medial collateral ligament. The time to peak ACL strain ranged from 48 to 61 milliseconds, but the timing differences were not significant between profiles. Strain timing was independent of injury-risk profile. Noncontact ACL injuries are expected to occur between 0 and 61 milliseconds after initial contact. Both ligaments reached peak strain within the same time frame.

Bates and Schilaty shared first authorship for equal contribution to this study. Bates, Schilaty, and Ueno are with the Department of Orthopedic Surgery; Bates and Schilaty are also with the Department of Biomedical Engineering and Physiology, and the Sports Medicine Center; Mayo Clinic, Rochester, MN, USA. Hewett is with Sparta Science, Menlo Park, CA, USA.

Bates (batesna@gmail.com) is corresponding author.
  • 1.

    Krosshaug T, Nakamae A, Boden BP, et al. Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med. 2007;35(3):359367. PubMed ID: 17092928 doi:10.1177/0363546506293899

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Withrow TJ, Huston LJ, Wojtys EM, Ashton-Miller JA. The relationship between quadriceps muscle force, knee flexion, and anterior cruciate ligament strain in an in vitro simulated jump landing. Am J Sports Med. 2006;34(2):269274. PubMed ID: 16260464 doi:10.1177/0363546505280906

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Withrow TJ, Huston LJ, Wojtys EM, Ashton-Miller JA. The effect of an impulsive knee valgus moment on in vitro relative ACL strain during a simulated jump landing. Clin Biomech. 2006;21(9):977983. doi:10.1016/j.clinbiomech.2006.05.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Kiapour AM, Quatman CE, Goel VK, Wordeman SC, Hewett TE, Demetropoulos CK. Timing sequence of multi-planar knee kinematics revealed by physiologic cadaveric simulation of landing: implications for ACL injury mechanism. Clin Biomech. 2014;29(1):7582. doi:10.1016/j.clinbiomech.2013.10.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492501. PubMed ID: 15722287 doi:10.1177/0363546504269591

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Myer GD, Ford KR, Khoury J, Succop P, Hewett TE. Development and validation of a clinic-based prediction tool to identify female athletes at high risk for anterior cruciate ligament injury. Am J Sports Med. 2010;38(10):20252033. PubMed ID: 20595554 doi:10.1177/0363546510370933

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Myer GD, Ford KR, Khoury J, Succop P, Hewett TE. Clinical correlates to laboratory measures for use in non-contact anterior cruciate ligament injury risk prediction algorithm. Clin Biomech. 2010;25(7):693699. doi:10.1016/j.clinbiomech.2010.04.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Sugimoto D, Myer GD, McKeon JM, Hewett TE. Evaluation of the effectiveness of neuromuscular training to reduce anterior cruciate ligament injury in female athletes: a critical review of relative risk reduction and numbers-needed-to-treat analyses. Br J Sports Med. 2012;46(14):979988. PubMed ID: 22745221 doi:10.1136/bjsports-2011-090895

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Webster KE, Hewett TE. A meta-analysis of meta-analyses of anterior cruciate ligament injury reduction training programs. J Orthop Res. 2018;36(10):26962708. PubMed ID: 29737024 doi:10.1002/jor.24043

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Hewett TE, Ford KR, Xu YY, Khoury J, Myer GD. Effectiveness of neuromuscular training based on the neuromuscular risk profile. Am J Sports Med. 2017;45(9):21422147. PubMed ID: 28441059 doi:10.1177/0363546517700128

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Bates NA, Schilaty ND, Krych AJ, Hewett TE. Influence of relative injury risk profiles on ACL and MCL strain during simulated landing leading to a noncontact ACL injury event. Clin Biomech. 2019;69:4451. doi:10.1016/j.clinbiomech.2019.06.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Bates NA, Schilaty ND, Nagelli CV, Krych AJ, Hewett TE. Multiplanar loading of the knee and its influence on ACL and MCL strain during simulated landings and noncontact tears. Am J Sports Med. 2019;47(8):18441853. PubMed ID: 31150273 doi:10.1177/0363546519850165

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Kiapour AM, Demetropoulos CK, Kiapour A, et al. Strain response of the anterior cruciate ligament to uniplanar and multiplanar loads during simulated landings: implications for injury mechanism. Am J Sports Med. 2016;44(8):20872096. PubMed ID: 27159285 doi:10.1177/0363546516640499

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Quatman CE, Kiapour AM, Demetropoulos CK, et al. Preferential loading of the ACL compared with the MCL during landing: a novel in sim approach yields the multiplanar mechanism of dynamic valgus during ACL injuries. Am J Sports Med. 2014;42(1):177186. PubMed ID: 24124198 doi:10.1177/0363546513506558

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Bates NA, Nesbitt RJ, Shearn JT, Myer GD, Hewett TE. Knee abduction affects greater magnitude of change in ACL and MCL strains than matched internal tibial rotation in vitro. Clin Orthop Relat Res. 2017;475:23852396. PubMed ID: 28455730 doi:10.1007/s11999-017-5367-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Schilaty ND, Bates NA, Nagelli C, Krych AJ, Hewett TE. Sex differences of medial collateral and anterior cruciate ligament strains with cadaveric impact simulations. Orthop J Sports Med. 2018;6(4):2325967118765215. PubMed ID: 29687012 doi:10.1177/2325967118765215

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    LaPrade RF, Wentorf FA, Fritts H, Gundry C, Hightower CD. A prospective magnetic resonance imaging study of the incidence of posterolateral and multiple ligament injuries in acute knee injuries presenting with a hemarthrosis. Arthroscopy. 2007;23(12):13411347. doi:10.1016/j.arthro.2007.07.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Bates NA, Nesbitt RJ, Shearn JT, Myer GD, Hewett TE. Relative strain in the anterior cruciate ligament and medial collateral ligament during simulated jump landing and sidestep cutting tasks: implications for injury risk. Am J Sports Med. 2015;43(9):22592269. PubMed ID: 26150588 doi:10.1177/0363546515589165

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Bates NA, Schilaty ND, Nagelli CV, Krych AJ, Hewett TE. Novel mechanical impact simulator designed to generate clinically relevant anterior cruciate ligament ruptures. Clin Biomech. 2017;44:3644. doi:10.1016/j.clinbiomech.2017.03.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Myer GD, Ford KR, Barber Foss KD, Liu C, Nick TG, Hewett TE. The relationship of hamstrings and quadriceps strength to anterior cruciate ligament injury in female athletes. Clin J Sport Med. 2009;19(1):38. PubMed ID: 19124976 doi:10.1097/JSM.0b013e318190bddb

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Palmieri-Smith RM, McLean SG, Ashton-Miller JA, Wojtys EM. Association of quadriceps and hamstrings cocontraction patterns with knee joint loading. J Athl Train. 2009;44(3):256263. doi:10.4085/1062-6050-44.3.256

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Bates NA, Schilaty ND, Nagelli CV, Krych AJ, Hewett TE. Validation of non-contact anterior cruciate ligament tears produced by a mechanical impact simulator against the clinical presentation of injury. Am J Sports Med. 2018;46(9):21132121. PubMed ID: 29864374 doi:10.1177/0363546518776621

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Bates NA, Hewett TE. Motion analysis and the anterior cruciate ligament: classification of injury risk. J Knee Surg. 2016;29(2):117125. PubMed ID: 26383143 doi:10.1055/s-0035-1558855

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Hewett TE, Torg JS, Boden BP. Video analysis of trunk and knee motion during non-contact anterior cruciate ligament injury in female athletes: lateral trunk and knee abduction motion are combined components of the injury mechanism. Br J Sports Med. 2009;43(6):417422. PubMed ID: 19372088 doi:10.1136/bjsm.2009.059162

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Bates NA, Ford KR, Myer GD, Hewett TE. Timing differences in the generation of ground reaction forces between the initial and secondary landing phases of the drop vertical jump. Clin Biomech. 2013;28(7):796799. doi:10.1016/j.clinbiomech.2013.07.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Pioletti DP, Rakotomanana LR, Leyvraz PF. Strain rate effect on the mechanical behavior of the anterior cruciate ligament–bone complex. Med Eng Phys. 1999;21:95100. PubMed ID: 10426509 doi:10.1016/S1350-4533(99)00028-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Lee M, Hyman W. Modeling of failure mode in knee ligaments depending on the strain rate. BMC Musculoskelet Disord. 2002;3:3. PubMed ID: 11860613 doi:10.1186/1471-2474-3-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Taylor KA, Terry ME, Utturkar GM, et al. Measurement of in vivo anterior cruciate ligament strain during dynamic jump landing. J Biomech. 2011;44(3):365371. PubMed ID: 21092960 doi:10.1016/j.jbiomech.2010.10.028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    DeMorat G, Weinhold P, Blackburn T, Chudik S, Garrett W. Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. Am J Sports Med. 2004;32(2):477483. PubMed ID: 14977677 doi:10.1177/0363546503258928

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Schilaty ND, Bates NA, Krych AJ, Hewett TE. Frontal plane medial collateral ligament strain characteristics concurrent to anterior cruciate ligament failure. Am J Sports Med. 2019;47(9):21432150. PubMed ID: 31219708 doi:10.1177/0363546519854286

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 306 306 90
Full Text Views 297 297 0
PDF Downloads 162 162 0