Comparisons of Knee Extensor Functional Demand During Gait by Age, Physical Activity Level, and the Impact of Acute Exercise and Walking Speed

in Journal of Applied Biomechanics
View More View Less
  • 1 University of Delaware
  • 2 University of Michigan
  • 3 University of Massachusetts Amherst
  • 4 University of Massachusetts Medical School
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

The link between age-related changes in muscle strength and gait is unclear. We tested if knee extensor functional demand differs by age and physical activity status and if functional demand increases with walking speed or after exercise. Gait and knee extensor muscle torque were collected from young adults and highly and less active older adults before and after treadmill walking. Functional demand was the ratio of knee moments during gait to knee extensor muscle torques estimated from participant-specific torque–velocity curves. Functional demand at the peak knee flexion moment was greater in less active older adults than young adults (29.3% [14.3%] vs 24.6% [12.1%]) and increased with walking speed (32.0% [13.9%] vs 22.8% [10.4%]). Functional demand at both knee extension moments increased ∼2% to 3% after exercise. The low functional demand found in this study suggests that healthy adults maintain a reserve of knee extensor strength.

Hafer is with the Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA; and the School of Kinesiology, University of Michigan, Ann Arbor, MI, USA. Hafer and Boyer are with the Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA, USA. Boyer is also with the Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, Worcester, MA, USA.

Hafer (jfhafer@udel.edu) is corresponding author.
  • 1.

    Lindle RS, Metter EJ, Lynch NA, et al. Age and gender comparisons of muscle strength in 654 women and men aged 20–93 yr. J Appl Physiol. 1997;83(5):15811587. doi:10.1152/jappl.1997.83.5.1581

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Murray MP, Gardner GM, Mollinger LA, Sepic SB. Strength of isometric and isokinetic contractions: knee muscles of men aged 20 to 86. Phys Ther. 1980;60(4):412419. PubMed ID: 7360797 doi:10.1093/ptj/60.4.412

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Callahan DM, Kent-Braun JA. Effect of old age on human skeletal muscle force-velocity and fatigue properties. J Appl Physiol. 2011;111(5):13451352. doi:10.1152/japplphysiol.00367.2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Bohannon RW. Comfortable and maximum walking speed of adults aged 20–79 years: reference values and determinants. Age Ageing. 1997;26(1):1519. PubMed ID: 9143432 doi:10.1093/ageing/26.1.15

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Himann JE, Cunningham DA, Rechnitzer PA, Paterson DH. Age-related changes in speed of walking. Med Sci Sports Exerc. 1988;20(2):161166. PubMed ID: 3367751 doi:10.1249/00005768-198820020-00010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Boyer KA, Johnson RT, Banks JJ, Jewell C, Hafer JF. Systematic review and meta-analysis of gait mechanics in young and older adults. Exp Gerontol. 2017;95:6370. PubMed ID: 28499954 doi:10.1016/j.exger.2017.05.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Manty M, de Leon CF, Rantanen T, et al. Mobility-related fatigue, walking speed, and muscle strength in older people. J Gerontol A Biol Sci Med Sci. 2012;67(5):523529. PubMed ID: 22016363 doi:10.1093/gerona/glr183

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Rantanen T, Guralnik JM, Izmirlian G, et al. Association of muscle strength with maximum walking speed in disabled older women. Am J Phys Med Rehabil. 1998;77(4):299305. PubMed ID: 9715919 doi:10.1097/00002060-199807000-00008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Skelton DA, Greig CA, Davies JM, Young A. Strength, power and related functional ability of healthy people aged 65–89 years. Age Ageing. 1994;23(5):371377. PubMed ID: 7825481 doi:10.1093/ageing/23.5.371

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Pandy MG, Lin Y-C, Kim HJ. Muscle coordination of mediolateral balance in normal walking. J Biomech. 2010;43(11):20552064. PubMed ID: 20451911 doi:10.1016/j.jbiomech.2010.04.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Whittington B, Silder A, Heiderscheit B, Thelen DG. The contribution of passive-elastic mechanisms to lower extremity joint kinetics during human walking. Gait Posture. 2008;27(4):628634. PubMed ID: 17928228 doi:10.1016/j.gaitpost.2007.08.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Samuel D, Rowe P, Nicol A. The functional demand (FD) placed on the knee and hip of older adults during everyday activities. Arch Gerontol Geriatr. 2013;57(2):192197. PubMed ID: 23561852 doi:10.1016/j.archger.2013.03.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Spinoso DH, Marques NR, LaRoche DP, et al. Hip, knee, and ankle functional demand during habitual and fast-pace walking in younger and older women. J Aging Phys Act. 2019;27(2):242251. PubMed ID: 30117347 doi:10.1123/japa.2017-0351

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Koushyar H, Anderson DE, Nussbaum MA, Madigan ML. Relative effort while walking is higher among women who are obese, and older women. Med Sci Sports Exerc. 2020;52(1):105111. PubMed ID: 31343522 doi:10.1249/MSS.0000000000002093

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Beijersbergen CM, Granacher U, Vandervoort AA, DeVita P, Hortobagyi T. The biomechanical mechanism of how strength and power training improves walking speed in old adults remains unknown. Ageing Res Rev. 2013;12(2):618627. PubMed ID: 23501431 doi:10.1016/j.arr.2013.03.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Hortobagyi T, Zheng D, Weidner M, Lambert NJ, Westbrook S, Houmard JA. The influence of aging on muscle strength and muscle fiber characteristics with special reference to eccentric strength. J Gerontol A Biol Sci Med Sci. 1995;50(6):B399B406. PubMed ID: 7583797 doi:10.1093/gerona/50A.6.B399

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Marcell TJ, Hawkins SA, Wiswell RA. Leg strength declines with advancing age despite habitual endurance exercise in active older adults. J Strength Cond Res. 2014;28(2):504513. PubMed ID: 24263662 doi:10.1519/JSC.0b013e3182a952cc

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Sandler RB, Burdett R, Zaleskiewicz M, Sprowls-Repcheck C, Harwell M. Muscle strength as an indicator of the habitual level of physical activity. Med Sci Sports Exerc. 1991;23(12):13751381. PubMed ID: 1798380 doi:10.1249/00005768-199112000-00009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Tarpenning KM, Hamilton-Wessler M, Wiswell RA, Hawkins SA. Endurance training delays age of decline in leg strength and muscle morphology. Med Sci Sports Exerc. 2004;36(1):7478. PubMed ID: 14707771 doi:10.1249/01.MSS.0000106179.73735.A6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Hafer JF, Kent JA, Boyer KA. Physical activity and age-related biomechanical risk factors for knee osteoarthritis. Gait Posture. 2019;70:2429. PubMed ID: 30784958 doi:10.1016/j.gaitpost.2019.02.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Foulis SA, Jones SL, van Emmerik RE, Kent JA. Post-fatigue recovery of power, postural control and physical function in older women. PLoS One. 2017;12(9):e0183483. PubMed ID: 28880935 doi:10.1371/journal.pone.0183483

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Petrella JK, Kim JS, Tuggle SC, Hall SR, Bamman MM. Age differences in knee extension power, contractile velocity, and fatigability. J Appl Physiol. 2005;98(1):211220. doi:10.1152/japplphysiol.00294.2004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Andriacchi TP, Alexander EJ, Toney MK, Dyrby C, Sum J. A point cluster method for in vivo motion analysis: applied to a study of knee kinematics. J Biomech Eng. 1998;120(6):743749. PubMed ID: 10412458 doi:10.1115/1.2834888

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Mentiplay BF, Banky M, Clark RA, Kahn MB, Williams G. Lower limb angular velocity during walking at various speeds. Gait Posture. 2018;65:190196. PubMed ID: 30558929 doi:10.1016/j.gaitpost.2018.06.162

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Reeves ND, Spanjaard M, Mohagheghi AA, Baltzopoulos V, Maganaris CN. Older adults employ alternative strategies to operate within their maximum capabilities when ascending stairs. J Electromyogr Kinesiol. 2009;19(2):e57e68. PubMed ID: 18053743 doi:10.1016/j.jelekin.2007.09.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Samuel D, Rowe P, Hood V, Nicol A. The biomechanical functional demand placed on knee and hip muscles of older adults during stair ascent and descent. Gait Posture. 2011;34(2):239244. PubMed ID: 21632255 doi:10.1016/j.gaitpost.2011.05.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Waanders JB, Hortobágyi T, Murgia A, Devita P, Franz JR. Advanced age redistributes positive but not negative leg joint work during walking. Med Sci Sports Exerc. 2019;51(4):615623. PubMed ID: 30395049 doi:10.1249/MSS.0000000000001828

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Hill AV. The heat of shortening and the dynamic constants of muscle. Proc R Soc London Ser B Biol Sci. 1938;126(843):136195. doi:10.1098/rspb.1938.0050

    • Search Google Scholar
    • Export Citation
  • 29.

    Lelas JL, Merriman GJ, Riley PO, Kerrigan DC. Predicting peak kinematic and kinetic parameters from gait speed. Gait Posture. 2003;17(2):106112. PubMed ID: 12633769 doi:10.1016/S0966-6362(02)00060-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Danneskiold-Samsoe B, Bartels EM, Bulow PM, et al. Isokinetic and isometric muscle strength in a healthy population with special reference to age and gender. Acta Physiol. 2009;197(suppl 673):168. doi:10.1111/j.1748-1716.2009.02022.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Baroni BM, Geremia JM, Rodrigues R, et al. Functional and morphological adaptations to aging in knee extensor muscles of physically active men. J Appl Biomech. 2013;29(5):535542. PubMed ID: 23182830 doi:10.1123/jab.29.5.535

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Kannus P, Beynnon B. Peak torque occurrence in the range of motion during isokinetic extension and flexion of the knee. Int J Sports Med. 1993;14(8):422426. PubMed ID: 8300265 doi:10.1055/s-2007-1021203

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 155 155 37
Full Text Views 170 170 7
PDF Downloads 73 73 2