Quantifying Segmental Contributions to Center-of-Mass Motion During Dynamic Continuous Support Surface Perturbations Using Simplified Estimation Models

in Journal of Applied Biomechanics
View More View Less
  • 1 Nipissing University
  • 2 Simon Fraser University
  • 3 Michigan Technological University
  • 4 Toronto Rehabilitation Institute—University Health Network
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Investigating balance reactions following continuous, multidirectional, support surface perturbations is essential for improving our understanding of balance control in moving environments. Segmental motions are often incorporated into rapid balance reactions following external perturbations to balance, although the effects of these motions during complex, continuous perturbations have not been assessed. This study aimed to quantify the contributions of body segments (ie, trunk, head, upper extremity, and lower extremity) to the control of center-of-mass (COM) movement during continuous, multidirectional, support surface perturbations. Three-dimensional, whole-body kinematics were captured while 10 participants experienced 5 minutes of perturbations. Anteroposterior, mediolateral, and vertical COM position and velocity were calculated using a full-body model and 7 models with reduced numbers of segments, which were compared with the full-body model. With removal of body segments, errors relative to the full-body model increased, while relationship strength decreased. The inclusion of body segments appeared to affect COM measures, particularly COM velocity. Findings suggest that the body segments may provide a means of improving the control of COM motion, primarily its velocity, during continuous, multidirectional perturbations, and constitute a step toward improving our understanding of how the limbs contribute to balance control in moving environments.

Schinkel-Ivy is with the School of Physical and Health Education, Nipissing University, North Bay, ON, Canada. Komisar is with the Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada. Duncan is with the Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, USA; and the Toronto Rehabilitation Institute—University Health Network.

Schinkel-Ivy (alisons@nipissingu.ca) is corresponding author.

Supplementary Materials

    • Supplementary Table 1 (PDF 97 KB)
    • Supplementary Table 2 (PDF 97 KB)
    • Supplementary Table 3 (PDF 97 KB)
  • 1.

    Verma SK, Willetts JL, Corns HL, Marucci-Wellman HR, Lombardi DA, Courtney TK. Falls and fall-related injuries among community-dwelling adults in the United States. PLoS One. 2016;11(3):e0150939. PubMed ID: 26977599 doi:10.1371/journal.pone.0150939

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Horak FB. Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age Ageing. 2006;35(suppl 2):ii7ii11. doi:10.1093/ageing/afl077

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Maki BE, McIlroy WE. The control of foot placement during compensatory stepping reactions: does speed of response take precedence over stability? IEEE Trans Rehabil Eng. 1999;7(1):8090. PubMed ID: 10188610 doi:10.1109/86.750556

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Akram SB, Frank JS, Patla AE, Allum JH. Balance control during continuous rotational perturbations of the support surface. Gait Posture. 2008;27(3):393398. PubMed ID: 17590337 doi:10.1016/j.gaitpost.2007.05.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Čamernik J, Potocanac Z, Peternel L, Babič J. Holding a handle for balance during continuous postural perturbations—immediate and transitionary effects on whole body posture. Front Hum Neurosci. 2016;10:486. PubMed ID: 27725798

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Duncan CA, Langlois RG, Albert WJ, MacKinnon SN. The habituation of human postural responses to platform perturbations. Int J Ind Ergon. 2014;44(6):874881. doi:10.1016/j.ergon.2014.06.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Duncan CA, Ingram TG, Mansfield A, Byrne JM, McIlroy WE. Population differences in postural response strategy associated with exposure to a novel continuous perturbation stimuli: would dancers have better balance on a boat? PLoS One. 2016;11(11):e0165735. PubMed ID: 27806129 doi:10.1371/journal.pone.0165735

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Duncan CA, MacKinnon SN, Marais JF, Basset FA. Energy cost associated with moving platforms. PeerJ. 2018;6:e5439. PubMed ID: 30186679 doi:10.7717/peerj.5439

  • 9.

    Jilk DJ, Safavynia SA, Ting LH. Contribution of vision to postural behaviors during continuous support-surface translations. Exp Brain Res. 2014;232(1):169180. doi:10.1007/s00221-013-3729-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Mills R, Levac D, Sveistrup H. Kinematics and postural muscular activity during continuous oscillating platform movement in children and adolescents with cerebral palsy. Gait Posture. 2018;66:1320. PubMed ID: 30138742 doi:10.1016/j.gaitpost.2018.08.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Mills RS, Sveistrup H. Kinematics and postural muscular activity during continuous oscillating platform movement in children and adolescents. Exp Brain Res. 2018;236(5):14791490. PubMed ID: 29550878 doi:10.1007/s00221-018-5228-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Schmid M, Sozzi S. Temporal features of postural adaptation strategy to prolonged and repeatable balance perturbation. Neurosci Lett. 2016;628:110115. PubMed ID: 27291456 doi:10.1016/j.neulet.2016.06.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Schinkel-Ivy A, Duncan CA. The effects of short-term and long-term experiences on co-contraction of the lower extremity postural control muscles during continuous, multi-directional support-surface perturbations. J Electromyogr Kinesiol. 2018;39:4248. PubMed ID: 29413452 doi:10.1016/j.jelekin.2018.01.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Maki BE, McIlroy WE. The role of limb movements in maintaining upright stance: the “change-in-support” strategy. Phys Ther. 1997;77(5):488507. PubMed ID: 9149760 doi:10.1093/ptj/77.5.488

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Maki BE, McIlroy WE. Control of rapid limb movements for balance recovery: age-related changes and implications for fall prevention. Age Ageing. 2006;35(suppl 2):ii12ii18. doi:10.1093/ageing/afl078

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Cheng KB, Huang YC, Kuo SY. Effect of arm swing on single-step balance recovery. Hum Mov Sci. 2014;38:173184. PubMed ID: 25457416 doi:10.1016/j.humov.2014.08.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Cheng KB, Wang KM, Kuo SY. Role of arm motion in feet-in-place balance recovery. J Biomech. 2015;48(12):31553162. PubMed ID: 26209086 doi:10.1016/j.jbiomech.2015.07.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Pijnappels M, Kingma I, Wezenberg D, Reurink G, van Dieën JH. Armed against falls: the contribution of arm movements to balance recovery after tripping. Exp Brain Res. 2010;201(4):689699. PubMed ID: 19949781 doi:10.1007/s00221-009-2088-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Roos PE, McGuigan MP, Kerwin DG, Trewartha G. The role of arm movement in early trip recovery in younger and older adults. Gait Posture. 2008;27(2):352356. PubMed ID: 17561398 doi:10.1016/j.gaitpost.2007.05.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Mapelli A, Zago M, Fusini L, Galante D, Colombo A, Sforza C. Validation of a protocol for the estimation of three-dimensional body center of mass kinematics in sport. Gait Posture. 2014;39(1):460465. PubMed ID: 24054347 doi:10.1016/j.gaitpost.2013.08.025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Winter DA. Human balance and posture control during standing and walking. Gait Posture. 1995;3(4):193214. doi:10.1016/0966-6362(96)82849-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Hof AL, Gazendam MG, Sinke WE. The condition for dynamic stability. J Biomech. 2005;38(1):18. PubMed ID: 15519333 doi:10.1016/j.jbiomech.2004.03.025

  • 23.

    Pavol MJ, Pai YC. Feedforward adaptations are used to compensate for a potential loss of balance. Exp Brain Res. 2002;145(4):528538. PubMed ID: 12172665 doi:10.1007/s00221-002-1143-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Winter DA, Patla AE, Ishac M, Gage WH. Motor mechanisms of balance during quiet standing. J Electromyogr Kinesiol. 2003;13(1):4956. PubMed ID: 12488086 doi:10.1016/S1050-6411(02)00085-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Yang F, Pai YC. Can sacral marker approximate center of mass during gait and slip-fall recovery among community-dwelling older adults? J Biomech. 2014;47(16):38073812. PubMed ID: 25468302 doi:10.1016/j.jbiomech.2014.10.027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Gard SA, Miff SC, Kuo AD. Comparison of kinematic and kinetic methods for computing the vertical motion of the body center of mass during walking. Hum Mov Sci. 2004;22(6):597610. PubMed ID: 15063043 doi:10.1016/j.humov.2003.11.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Havens KL, Mukherjee T, Finley JM. Analysis of biases in dynamic margins of stability introduced by the use of simplified center of mass estimates during walking and turning. Gait Posture. 2018;59:162167. PubMed ID: 29031999 doi:10.1016/j.gaitpost.2017.10.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Huntley AH, Schinkel-Ivy A, Aqui A, Mansfield A. Validation of simplified centre of mass models during gait in individuals with chronic stroke. Clin Biomech. 2017;48:97102. doi:10.1016/j.clinbiomech.2017.07.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Inkol KA, Huntley AH, Vallis LA. Modeling margin of stability with feet in place following a postural perturbation: effect of altered anthropometric models for estimated extrapolated centre of mass. Gait Posture. 2018;62:434439. PubMed ID: 29653405 doi:10.1016/j.gaitpost.2018.03.050

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Jamkrajang P, Robinson MA, Limroongreungrat W, Vanrenterghem J. Can segmental model reductions quantify whole-body balance accurately during dynamic activities? Gait Posture. 2017;56:3741. PubMed ID: 28494320 doi:10.1016/j.gaitpost.2017.04.036

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Tisserand R, Robert T, Dumas R, Chèze L. A simplified marker set to define the center of mass for stability analysis in dynamic situations. Gait Posture. 2016;48:6467. PubMed ID: 27477710 doi:10.1016/j.gaitpost.2016.04.032

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Vanrenterghem J, Gormley D, Robinson MA, Lees A. Solutions for representing the whole-body centre of mass in side cutting manoeuvres based on data that is typically available for lower limb kinematics. Gait Posture. 2010;31(4):517521. PubMed ID: 20299222 doi:10.1016/j.gaitpost.2010.02.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Winberg T, Duncan CA, Byrne JM, Mansfield A, McIlroy WE, Laing AC. The influence of simulated maritime environments on lower limb joint kinematics. Paper presented at: 19th Biennial Conference of the Canadian Society for Biomechanics; 2016. Hamilton, Canada.

    • Export Citation
  • 34.

    Ingram TG, Duncan CA, Mansfield A, Byrne JM, McIlroy WE. The influence of previous experiences on participant performance during maritime simulation testing. Theor Issues Ergon Sci. 2016;17(3):324336. doi:10.1080/1463922X.2016.1138153

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Duncan CA, Albert WJ, Langlois RG, MacKinnon SN. Stepping response during constrained and unconstrained standing in moving environments. Int J Marit Eng. 2014;156:207212.

    • Search Google Scholar
    • Export Citation
  • 36.

    Halvorsen K, Eriksson M, Gullstrand L, Tinmark F, Nilsson J. Minimal marker set for center of mass estimation in running. Gait Posture. 2009;30(4):552555. PubMed ID: 19665896 doi:10.1016/j.gaitpost.2009.06.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Winter DA. Biomechanics and Motor Control of Human Movement. 3rd ed. Hoboken, NJ: John Wiley & Sons Canada, Ltd; 2005.

  • 38.

    Dempster W. Space Requirements of the Seated Operator. Dayton, OH: Wright-Patterson Air Force Base; 1955.

  • 39.

    Havanan EJ. A Mathematical Model for the Human Body. Dayton, OH: Wright-Patterson Air Force Base; 1964.

  • 40.

    Komisar V, Nirmalanathan K, Novak AC. Influence of handrail height and fall direction on center of mass control and the physical demands of reach-to-grasp balance recovery reactions. Gait Posture. 2018;60:209216. PubMed ID: 29277059 doi:10.1016/j.gaitpost.2017.12.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 298 298 52
Full Text Views 19 19 1
PDF Downloads 15 15 0