Older Adults Overcome Reduced Triceps Surae Structural Stiffness to Preserve Ankle Joint Quasi-Stiffness During Walking

in Journal of Applied Biomechanics
View More View Less
  • 1 University of North Carolina at Chapel Hill and North Carolina State University
  • 2 Georgia Institute of Technology
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Ankle joint quasi-stiffness is an aggregate measure of the interaction between triceps surae muscle stiffness and Achilles tendon stiffness. This interaction may be altered due to age-related changes in the structural properties and functional behavior of the Achilles tendon and triceps surae muscles. The authors hypothesized that, due to a more compliant of Achilles’ tendon, older adults would exhibit lower ankle joint quasi-stiffness than young adults during walking and during isolated contractions at matched triceps surae muscle activations. The authors also hypothesized that, independent of age, triceps surae muscle stiffness and ankle joint quasi-stiffness would increase with triceps surae muscle activation. The authors used conventional gait analysis in one experiment and, in another, electromyographic biofeedback and in vivo ultrasound imaging applied during isolated contractions. The authors found no difference in ankle joint quasi-stiffness between young and older adults during walking. Conversely, this study found that (1) young and older adults modulated ankle joint quasi-stiffness via activation-dependent changes in triceps surae muscle length–tension behavior and (2) at matched activation, older adults exhibited lower ankle joint quasi-stiffness than young adults. Despite age-related reductions during isolated contractions, ankle joint quasi-stiffness was maintained in older adults during walking, which may be governed via activation-mediated increases in muscle stiffness.

Krupenevich, Clark, and Franz are with the Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; and North Carolina State University, Raleigh, NC, USA. Sawicki is with the George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.

Franz (jrfranz@email.unc.edu) is corresponding author.

Supplementary Materials

    • Supplementary Figure 1 (PDF 208 KB)
    • Supplementary Material (PDF 282 KB)
  • 1.

    Franz JR. The age-associated reduction in propulsive power generation in walking. Exerc Sport Sci Rev. 2016;44(4):129136. doi:10.1249/JES.0000000000000086

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    DeVita P, Hortobagyi T. Age causes a redistribution of joint torques and power during gait. J Appl Physiol. 2000;88:18041811. PubMed ID: 10797145 doi:10.1152/jappl.2000.88.5.1804

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Lichtwark G, Wilson A. Effects of series elasticity and activation conditions on muscle power output and efficiency. J Exp Biol. 2005;208(15):28452853. doi:10.1242/jeb.01710

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Zelik KE, Huang T-WP, Adamczyk PG, Kuo AD. The role of series ankle elasticity in bipedal walking. J Theor Biol. 2014;346:7585. PubMed ID: 24365635 doi:10.1016/j.jtbi.2013.12.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Shamaei K, Sawicki GS, Dollar AM. Estimation of quasi-stiffness and propulsive work of the human ankle in the stance phase of walking. PLoS One. 2013;8(3):e59935. PubMed ID: 23555839 doi:10.1371/journal.pone.0059935

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Clark WH, Franz JR. Activation-dependent changes in soleus length-tension behavior augment ankle joint quasi-stiffness. J Appl Biomech. 2019;35(3):182189. PubMed ID: 30676171 doi:10.1123/jab.2018-0297

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Collins SH, Wiggin MB, Sawicki GS. Reducing the energy cost of human walking using an unpowered exoskeleton. Nature. 2015;522(7555):212215. PubMed ID: 25830889 doi:10.1038/nature14288

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Orselli MIV, Franz JR, Thelen DG. The effects of Achilles tendon compliance on triceps surae mechanics and energetics in walking. J Biomech. 2017;60:227231. PubMed ID: 28728791 doi:10.1016/j.jbiomech.2017.06.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Onambele GL, Narici MV, Maganaris CN. Calf muscle-tendon properties and postural balance in old age. J Appl Biomech. 2006;100(6):20482056.

    • Search Google Scholar
    • Export Citation
  • 10.

    Stenroth L, Peltonen J, Cronin NJ, Sipilä S, Finni T. Age-related differences in Achilles tendon properties and triceps surae muscle architecture in vivo. J Appl Physiol. 2012;113(10):15371544. PubMed ID: 23042907 doi:10.1152/japplphysiol.00782.2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Delabastita T, Bogaerts S, Vanwanseele B. Age-related changes in achilles tendon stiffness and impact on functional activities: a systematic review and meta-analysis. J Aging Phys Act. 2019;27(1):116127. doi:10.1123/japa.2017-0359

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Lindle RS. Age and gender comparisons of muscle strength in 654 women and men aged 20–93 yr. J Appl Physiol. 1997;83(5):15811587. doi:10.1152/jappl.1997.83.5.1581

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Mitchell WK, Williams J, Atherton P, Larvin M, Lund J, Narici M. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol. 2012;3:260. PubMed ID: 22934016 doi:10.3389/fphys.2012.00260

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Arnold EM, Ward SR, Lieber RL, Delp SL. A model of the lower limb for analysis of human movement. Ann Biomed Eng. 2010;38(2):269279. doi:10.1007/s10439-009-9852-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Piazza SJ, Okita N, Cavanagh PR. Accuracy of the functional method of hip joint center location: effects of limited motion and varied implementation. J Biomech. 2001;34(7):967973. PubMed ID: 11410180 doi:10.1016/S0021-9290(01)00052-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Silder A, Heiderscheit B, Thelen DG. Active and passive contributions to joint kinetics during walking in older adults. J Biomech. 2008;41(7):15201527. PubMed ID: 18420214 doi:10.1016/j.jbiomech.2008.02.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Crenna P, Frigo C. Dynamics of the ankle joint analyzed through moment–angle loops during human walking: gender and age effects. Hum Mov Sci. 2011;30(6):11851198. PubMed ID: 21669469 doi:10.1016/j.humov.2011.02.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Hawkins D, Lum C, Gaydos D, Dunning R. Dynamic creep and pre-conditioning of the Achilles tendon in-vivo. J Biomech. 2009;42(16):28132817. PubMed ID: 19762028 doi:10.1016/j.jbiomech.2009.08.023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Mentiplay BF, Banky M, Clark RA, Kahn MB, Williams G. Lower limb angular velocity during walking at various speeds. Gait Posture. 2018;65:190196. PubMed ID: 30558929 doi:10.1016/j.gaitpost.2018.06.162

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Farris DJ, Lichtwark GA. UltraTrack: software for semi-automated tracking of muscle fascicles in sequences of B-mode ultrasound images. Comput Methods Programs Biomed. 2016;128:111118. PubMed ID: 27040836 doi:10.1016/j.cmpb.2016.02.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Franz JR, Khanchandani A, McKenny H, Clark WH. Ankle rotation and muscle loading effects on the calcaneal tendon moment arm: an in vivo imaging and modeling study. Ann Biomed Eng. 2019;47(2):590600. PubMed ID: 30386951 doi:10.1007/s10439-018-02162-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Morse CI, Thom JM, Birch KM, Narici MV. Changes in triceps surae muscle architecture with sarcopenia. Acta Physiol Scand. 2005;183(3):291298. PubMed ID: 15743389 doi:10.1111/aps.2005.183.issue-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. New York, NY: Routledge Academic; 1988.

  • 24.

    Winter DA, Patla AE, Frank JS, Walt SE. Biomechanical walking pattern changes in the fit and healthy elderly. Phys Ther. 1990;70(6):340347. PubMed ID: 2345777 doi:10.1093/ptj/70.6.340

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Cofré LE, Lythgo N, Morgan D, Galea MP. Aging modifies joint power and work when gait speeds are matched. Gait Posture. 2011;33(3):484489. doi:10.1016/j.gaitpost.2010.12.030

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Collins JD, Arch ES, Crenshaw JR, et al. Net ankle quasi-stiffness is influenced by walking speed but not age for older adult women. Gait Posture. 2018;62:311316. PubMed ID: 29609159 doi:10.1016/j.gaitpost.2018.03.031

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Boyer KA, Andriacchi TP, Beaupre GS. The role of physical activity in changes in walking mechanics with age. Gait Posture. 2012;36(1):149153. PubMed ID: 22445586 doi:10.1016/j.gaitpost.2012.02.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Slane LC, Thelen DG. Achilles tendon displacement patterns during passive stretch and eccentric loading are altered in middle-aged adults. Med Eng Phys. 2015;37(7):712716. PubMed ID: 25962378 doi:10.1016/j.medengphy.2015.04.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Houdijk H, Doets HC, van Middelkoop M, Veeger HD. Joint stiffness of the ankle during walking after successful mobile-bearing total ankle replacement. Gait Posture. 2008;27(1):115119. PubMed ID: 17462899 doi:10.1016/j.gaitpost.2007.03.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Sekiguchi Y, Muraki T, Kuramatsu Y, Furusawa Y, Izumi S-I. The contribution of quasi-joint stiffness of the ankle joint to gait in patients with hemiparesis. Clin Biomech. 2012;27(5):495499. doi:10.1016/j.clinbiomech.2011.12.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Chino K, Takahashi H. Measurement of gastrocnemius muscle elasticity by shear wave elastography: association with passive ankle joint stiffness and sex differences. Eur J Appl Physiol. 2016;116(4):823830. PubMed ID: 26874517 doi:10.1007/s00421-016-3339-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Pardes A, Beach Z, Raja H, Rodriguez A, Freedman B, Soslowsky L. Aging leads to inferior Achilles tendon mechanics and altered ankle function in rodents. J Biomech. 2017;60:3038. PubMed ID: 28683928 doi:10.1016/j.jbiomech.2017.06.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Schmitz A, Silder A, Heiderscheit B, Mahoney J, Thelen DG. Differences in lower-extremity muscular activation during walking between healthy older and young adults. J Electromyogr Kinesiol. 2009;19(6):10851091. PubMed ID: 19081734 doi:10.1016/j.jelekin.2008.10.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Franz JR, Kram R. How does age affect leg muscle activity/coactivity during uphill and downhill walking? Gait Posture. 2013;37(3):378384. PubMed ID: 22940542 doi:10.1016/j.gaitpost.2012.08.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 554 554 71
Full Text Views 49 49 1
PDF Downloads 29 29 1