Which Are the Key Kinematic and Kinetic Components to Distinguish Recovery Strategies for Overground Slips Among Community-Dwelling Older Adults?

in Journal of Applied Biomechanics
View More View Less
  • 1 University of Illinois at Chicago
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Slip outcomes are categorized as either a backward loss of balance (LOB) or a no loss of balance (no-LOB) in which an individual does not take a backward step to regain their stability. LOB includes falls and nonfalls, while no-LOB includes skate overs and walkovers. Researchers are uncertain about which factors determine slip outcomes and at which critical instants they do so. The purpose of the study was to investigate factors affecting slip outcomes in proactive and early reactive phases by analyzing 136 slip trials from 68 participants (age: 72.2 [5.3] y, female: 22). Segment angles and average joint moments in the sagittal plane of the slipping limb were compared for different slip outcomes. The results showed that knee flexor, hip extensor, and plantar flexor moments were significantly larger for no-LOB than for LOB in the midproactive phase, leading to smaller shank-ground and foot-ground angles at the slip onset, based on forward dynamics. In the early reactive phase, the hip extensor and plantar flexor moments were larger for no-LOB than for LOB, and all segment angles were smaller for no-LOB. Our findings indicate that the shank angle and knee moment were the major determinants of slip outcomes in both proactive and reactive phases.

The authors are with the Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA.

Bhatt (tbhatt6@uic.edu) is corresponding author.
  • 1.

    Englander F, Hodson TJ, Terregrossa RA. Economic dimensions of slip and fall injuries. J Forensic Sci. 1996;41(5):733746. PubMed ID: 8789837 doi:10.1520/JFS13991J

  • 2.

    Stevens JA, Sogolow ED. Gender differences for non-fatal unintentional fall related injuries among older adults. Injury Prev. 2005;11(2):115119. doi:10.1136/ip.2004.005835

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Holbrook TL, Grazier KL. The Frequency of Occurrence, Impact, and Cost of Selected Musculoskeletal Conditions in the United StatesChicago, IL: Amer Academy of Orthopaedic; 1984.

    • Search Google Scholar
    • Export Citation
  • 4.

    Tuunainen E, Rasku J, Jantti P, Pyykko I. Risk factors of falls in community dwelling active elderly. Auris Nasus Larynx. 2014;41(1):1016. PubMed ID: 23763793 doi:10.1016/j.anl.2013.05.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    United States Department of Labor. Lost-Work-Time Injuries and Illnesses: Characteristics and Resulting Days Away From Work, 2001. Washington, DC: Bureau of Labor Statistics; 2003.

    • Search Google Scholar
    • Export Citation
  • 6.

    Redfern MS, Cham R, Gielo-Perczak K, et al. Biomechanics of slips. Ergonomics. 2001;44(13):11381166. PubMed ID: 11794762 doi:10.1080/00140130110085547

  • 7.

    Lam T, Anderschitz M, Dietz V. Contribution of feedback and feedforward strategies to locomotor adaptations. J Neurophysiol. 2006;95(2):766773. PubMed ID: 16424453 doi:10.1152/jn.00473.2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Hay L, Redon C. Feedforward versus feedback control in children and adults subjected to a postural disturbance. Exp Brain Res. 1999;125(2):153162. PubMed ID: 10204768 doi:10.1007/s002210050670

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Tang PF, Woollacott MH, Chong RK. Control of reactive balance adjustments in perturbed human walking: roles of proximal and distal postural muscle activity. Exp Brain Res. 1998;119(2):141152. PubMed ID: 9535563 doi:10.1007/s002210050327

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Pavol MJ, Runtz EF, Pai YC. Young and older adults exhibit proactive and reactive adaptations to repeated slip exposure. J Gerontol A Biol Sci Med Sci. 2004;59(5):494502. doi:10.1093/gerona/59.5.M494

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Yang F, Pai YC. Role of individual lower limb joints in reactive stability control following a novel slip in gait. J Biomech. 2010;43(3):397404. PubMed ID: 19896133 doi:10.1016/j.jbiomech.2009.10.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Pavol MJ, Runtz EF, Edwards BJ, Pai YC. Age influences the outcome of a slipping perturbation during initial but not repeated exposures. J Gerontol A Biol Sci Med Sci. 2002;57(8):M496M503. doi:10.1093/gerona/57.8.M496

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Pai YC. Movement termination and stability in standing. Exerc Sport Sci Rev. 2003;31(1):1925. PubMed ID: 12562166 doi:10.1097/00003677-200301000-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Mak MK, Yang F, Pai YC. Limb collapse, rather than instability, causes failure in sit-to-stand performance among patients with Parkinson disease. Phys Ther. 2011;91(3):381391. PubMed ID: 21273628 doi:10.2522/ptj.20100232

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Yang F, Bhatt T, Pai YC. Role of stability and limb support in recovery against a fall following a novel slip induced in different daily activities. J Biomech. 2009;42(12):19031908. PubMed ID: 19520372 doi:10.1016/j.jbiomech.2009.05.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Cham R, Redfern MS. Lower extremity corrective reactions to slip events. J Biomech. 2001;34(11):14391445. PubMed ID: 11672718 doi:10.1016/S0021-9290(01)00116-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Bhatt T, Wening JD, Pai YC. Adaptive control of gait stability in reducing slip-related backward loss of balance. Exp Brain Res. 2006;170(1):6173. PubMed ID: 16344930 doi:10.1007/s00221-005-0189-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Morris ME, Huxham F, McGinley J, Dodd K, Iansek R. The biomechanics and motor control of gait in Parkinson disease. Clin Biomech. 2001;16(6):459470. doi:10.1016/S0268-0033(01)00035-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Mcilroy WE, Maki BE. Changes in early automatic postural responses associated with the prior-planning and execution of a compensatory step. Brain Res. 1993;631(2):203211. PubMed ID: 8131048 doi:10.1016/0006-8993(93)91536-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Reynolds RF, Bronstein AM. The broken escalator phenomenon—aftereffect of walking onto a moving platform. Exp Brain Res. 2003;151(3):301308. PubMed ID: 12802549 doi:10.1007/s00221-003-1444-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Bhatt T, Pai YC. Role of cognition and priming in interlimb generalization of adaptive control of gait stability. J Motor Behav. 2009;41(6):479493. doi:10.3200/35-08-021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Siegmund GP, Heiden TL, Sanderson DJ, Inglis JT, Brault JR. The effect of subject awareness and prior slip experience on tribometer-based predictions of slip probability. Gait Posture. 2006;24(1):110119. PubMed ID: 16171996 doi:10.1016/j.gaitpost.2005.08.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Allin LJ, Nussbaum MA, Madigan ML. Feet kinematics upon slipping discriminate between recoveries and three types of slip-induced falls. Ergonomics. 2018;61(6):866876. PubMed ID: 29231784 doi:10.1080/00140139.2017.1413212

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Wang S, Liu X, Lee A, Pai YC. Can recovery foot placement affect older adults’ slip-fall severity? Ann Biomed Eng. 2017;45(8):19411948. PubMed ID: 28474271 doi:10.1007/s10439-017-1834-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Bhatt T, Yang F, Pai YC. Learning to resist gait-slip falls: long-term retention in community-dwelling older adults. Arch Phys Med Rehab. 2012;93(4):557564. doi:10.1016/j.apmr.2011.10.027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Pai YC, Yang F, Bhatt T, Wang E. Learning from laboratory-induced falling: long-term motor retention among older adults. Age. 2014;36(3):13671376. doi:10.1007/s11357-014-9640-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Yang F, Pai YC. Automatic recognition of falls in gait-slip training: harness load cell based criteria. J Biomech. 2011;44(12):22432249. PubMed ID: 21696744 doi:10.1016/j.jbiomech.2011.05.039

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Wang S, Bhatt T, Liu X, Pai YC. The role of recovery lower limb segments in post-slip determination of falls due to instability or limb collapse. Ann Biomed Eng. 2020;48(1):192202. PubMed ID: 31338626 doi:10.1007/s10439-019-02327-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Begg RK, Sparrow WA. Ageing effects on knee and ankle joint angles at key events and phases of the gait cycle. J Med Eng Technol. 2006;30(6):382389. PubMed ID: 17060166 doi:10.1080/03091900500445353

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Espy DD, Yang F, Bhatt T, Pai YC. Independent influence of gait speed and step length on stability and fall risk. Gait Posture. 2010;32(3):378382. PubMed ID: 20655750 doi:10.1016/j.gaitpost.2010.06.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Lockhart TE, Woldstad JC, Smith JL. Effects of age-related gait changes on the biomechanics of slips and falls. Ergonomics. 2003;46(12):11361160. PubMed ID: 12933077 doi:10.1080/0014013031000139491

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Delp SL, Anderson FC, Arnold AS, et al. OpenSim: open-source software to create and analyze dynamic Simulations of movement. IEEE Trans Biomed Eng. 2007;54(11):19401950. PubMed ID: 18018689 doi:10.1109/TBME.2007.901024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Gaffney BM, Harris MD, Davidson BS, Stevens-Lapsley JE, Christiansen CL, Shelburne KB. Multi-Joint compensatory effects of unilateral total knee arthroplasty during high-demand tasks. Ann Biomed Eng. 2016;44(8):25292541. PubMed ID: 26666227 doi:10.1007/s10439-015-1524-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat. 2001;29(4):11651188. doi:10.1214/aos/1013699998

    • Search Google Scholar
    • Export Citation
  • 35.

    Yang F, Su X, Wen PS, Lazarus J. Adaptation to repeated gait-slip perturbations among individuals with multiple sclerosis. Mult Scler Relat Disord. 2019;35:135141. PubMed ID: 31376685 doi:10.1016/j.msard.2019.07.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Allin LJ, Nussbaum MA, Madigan ML. Two novel slip training methods improve the likelihood of recovering balance after a laboratory-induced slip. J Appl Biomech. 2018;35(1):131.

    • Search Google Scholar
    • Export Citation
  • 37.

    Winter DA. Biomechanics and Motor Control of Human MovementHoboken, NJ: John Wiley & Sons; 2009.

  • 38.

    Kerrigan DC, Lee LW, Collins JJ, Riley PO, Lipsitz LA. Reduced hip extension during walking: healthy elderly and fallers versus young adults. Arch Phys Med Rehabil. 2001;82(1):2630. doi:10.1053/apmr.2001.18584

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Bhatt T, Wening JD, Pai YC. Influence of gait speed on stability: recovery from anterior slips and compensatory stepping. Gait Posture. 2005;21(2):146156. PubMed ID: 15639393 doi:10.1016/j.gaitpost.2004.01.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    van Hedel HJ, Biedermann A, Erni T, Dietz V. Obstacle avoidance during human walking: transfer of motor skill from one leg to the other. J Physiol. 2002;543(2):709717. doi:10.1113/jphysiol.2002.018473

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 271 271 76
Full Text Views 18 18 1
PDF Downloads 12 12 0