Muscular Coordination of Single-Leg Hop Landing in Uninjured and Anterior Cruciate Ligament-Reconstructed Individuals

in Journal of Applied Biomechanics
View More View Less
  • 1 La Trobe University
  • 2 Monash University
  • 3 University of Melbourne
  • 4 Queensland University of Technology
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

This study compared lower-limb muscle function, defined as the contributions of muscles to center-of-mass support and braking, during a single-leg hopping task in anterior cruciate ligament-reconstructed (ACLR) individuals and uninjured controls. In total, 65 ACLR individuals and 32 controls underwent a standardized anticipated single-leg forward hop. Kinematics and ground reaction force data were input into musculoskeletal models to calculate muscle forces and to quantify muscle function by decomposing the vertical (support) and fore-aft (braking) ground reaction force components into contributions by individual lower-limb muscles. Four major muscles, the vasti, soleus, gluteus medius, and gluteus maximus, were primarily involved in support and braking in both ACLR and uninjured groups. However, although the ACLR group demonstrated lower peak forces for these muscles (all Ps < .001, except gluteus maximus, P = .767), magnitude differences in these muscles’ contributions to support and braking were not significant. ACLR individuals demonstrated higher erector spinae (P = .012) and hamstrings forces (P = .085) to maintain a straighter, stiffer landing posture with more forward lumbar flexion. This altered landing posture may have enabled the ACLR group to achieve similar muscle function to controls, despite muscle force deficits. Our findings may benefit rehabilitation and the development of interventions to enable faster and safer return to sport.

Sritharan is with the La Trobe Sports & Exercise Medicine Research Centre, La Trobe University, Bundoora, VIC, Australia. Perraton is with the Department of Physiotherapy, Monash University, Clayton, VIC, Australia. Munoz is with the School of Mathematics & Statistics, University of Melbourne, Melbourne, VIC, Australia. Pivonka is with the School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, VIC, Australia. Bryant is with the Centre for Health, Exercise and Sports Medicine, University of Melbourne, Melbourne, VIC, Australia.

Sritharan (p.sritharan@latrobe.edu.au) is corresponding author.

Supplementary Materials

    • Supplementary Figure S1 (PDF 296 KB)
  • 1.

    Mall NA, Chalmers PN, Moric M, et al. Incidence and trends of anterior cruciate ligament reconstruction in the United States. Am J Sports Med. 2014;42(10):23632370. PubMed ID: 25086064 doi:10.1177/0363546514542796

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Ardern CL, Taylor NF, Feller JA, Webster KE. Fifty-five per cent return to competitive sport following anterior cruciate ligament reconstruction surgery: an updated systematic review and meta-analysis including aspects of physical functioning and contextual factors. Br J Sports Med. 2014;48(21):15431552. PubMed ID: 25157180 doi:10.1136/bjsports-2013-093398

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Nawasreh Z, Logerstedt D, Cummer K, Axe M, Risberg MA, Snyder-Mackler L. Functional performance 6 months after ACL reconstruction can predict return to participation in the same preinjury activity level 12 and 24 months after surgery. Br J Sports Med. 2018;52(6):375. PubMed ID: 28954801 doi:10.1136/bjsports-2016-097095

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Johnston PT, McClelland JA, Webster KE. Lower limb biomechanics during single-leg landings following anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Sports Med. 2018;48(9):21032126. PubMed ID: 29949109 doi:10.1007/s40279-018-0942-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Bryant AL, Newton RU, Steele J. Successful feed-forward strategies following ACL injury and reconstruction. J Electromyogr Kinesiol. 2009;19(5):988997. PubMed ID: 18656383 doi:10.1016/j.jelekin.2008.06.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Xergia SA, Pappas E, Zampeli F, Georgiou S, Georgoulis AD. Asymmetries in functional hop tests, lower extremity kinematics, and isokinetic strength persist 6 to 9 months following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2013;43(3):154162. PubMed ID: 23322072 doi:10.2519/jospt.2013.3967

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Holsgaard-Larsen A, Jensen C, Mortensen NH, Aagaard P. Concurrent assessments of lower limb loading patterns, mechanical muscle strength and functional performance in ACL-patients—a cross-sectional study. Knee. 2014;21(1):6673. PubMed ID: 23835518 doi:10.1016/j.knee.2013.06.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Markstrom JL, Tengman E, Hager CK. ACL-reconstructed and ACL-deficient individuals show differentiated trunk, hip, and knee kinematics during vertical hops more than 20 years post-injury. Knee Surg Sports Traumatol Arthrosc. 2018;26(2):358367. PubMed ID: 28337590

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Lewek M, Rudolph K, Axe M, Snyder-Mackler L. The effect of insufficient quadriceps strength on gait after anterior cruciate ligament reconstruction. Clin Biomech. 2002;17(1):5663. doi:10.1016/S0268-0033(01)00097-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Williams GN, Buchanan TS, Barrance PJ, Axe MJ, Snyder-Mackler L. Quadriceps weakness, atrophy, and activation failure in predicted noncopers after anterior cruciate ligament injury. Am J Sports Med2005;33(3):402407. PubMed ID: 15716256 doi:10.1177/0363546504268042

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Bryant AL, Clark RA, Pua YH. Morphology of hamstring torque-time curves following ACL injury and reconstruction: mechanisms and implications. J Orthop Res. 2011;29(6):907914. PubMed ID: 21259335 doi:10.1002/jor.21306

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Tsai LC, Powers CM. Increased hip and knee flexion during landing decreases tibiofemoral compressive forces in women who have undergone anterior cruciate ligament reconstruction. Am J Sports Med. 2013;41(2):423429. PubMed ID: 23271006 doi:10.1177/0363546512471184

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Sharifi M, Shirazi-Adl A, Marouane H. Computation of the role of kinetics, kinematics, posterior tibial slope and muscle cocontraction on the stability of ACL-deficient knee joint at heel strike—towards identification of copers from non-copers. J Biomech. 2018;77:171182. PubMed ID: 30033382 doi:10.1016/j.jbiomech.2018.07.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Swanik CB, Lephart SM, Swanik KA, Stone DA, Fu FH. Neuromuscular dynamic restraint in women with anterior cruciate ligament injuries. Clin Orthop Relat Res. 2004(425):189199.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Zajac FE, Gordon ME. Determining muscle’s force and action in multi-articular movement. Exerc Sport Sci Rev. 1989;17(1):187230. PubMed ID: 2676547.

  • 16.

    Anderson FC, Pandy MG. Individual muscle contributions to support in normal walking. Gait Posture. 2003;17(2):159169. PubMed ID: 12633777 doi:10.1016/S0966-6362(02)00073-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Lin YC, Kim HJ, Pandy MG. A computationally efficient method for assessing muscle function during human locomotion. Int J Numer Meth Biomed Eng. 2010;27(3):436449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Pandy MG, Lin YC, Kim HJ. Muscle coordination of mediolateral balance in normal walking. J Biomech. 2010;43(11):20552064. PubMed ID: 20451911 doi:10.1016/j.jbiomech.2010.04.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Liu MQ, Anderson FC, Pandy MG, Delp SL. Muscles that support the body also modulate forward progression during walking. J Biomech. 2006;39(14):26232630. PubMed ID: 16216251 doi:10.1016/j.jbiomech.2005.08.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Hamner SR, Seth A, Delp SL. Muscle contributions to propulsion and support during running. J Biomech. 2010;43(14):27092716. PubMed ID: 20691972 doi:10.1016/j.jbiomech.2010.06.025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Lin YC, Fok LA, Schache AG, Pandy MG. Muscle coordination of support, progression and balance during stair ambulation. J Biomech. 2015;48(2):340347. PubMed ID: 25498364 doi:10.1016/j.jbiomech.2014.11.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Correa TA, Pandy MG. On the potential of lower limb muscles to accelerate the body’s centre of mass during walking. Comput Methods Biomech Biomed Engin. 2013;16(9):10131021. PubMed ID: 22372586 doi:10.1080/10255842.2011.650634

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Sritharan P, Lin YC, Richardson SE, Crossley KM, Birmingham TB, Pandy MG. Lower-limb muscle function during gait in varus mal-aligned osteoarthritis patients. J Orthop Res. 2018;36(8), 21572166.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Perraton L, Clark R, Crossley K, et al. Impaired voluntary quadriceps force control following anterior cruciate ligament reconstruction: relationship with knee function. Knee Surg Sports Traumatol Arthrosc. 2016;25(5):14241431. PubMed ID: 26745965 doi:10.1007/s00167-015-3937-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Tegner Y, Lysholm J. Rating systems in the evaluation of knee ligament injuries. Clin Orthop Relat Res. 1985(198):4349.

  • 26.

    Noyes FR, Barber-Westin SD. Surgical reconstruction of severe chronic posterolateral complex injuries of the knee using allograft tissues. Am J Sports Med. 1995;23(1):212. PubMed ID: 7726346 doi:10.1177/036354659502300102

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Culvenor AG, Perraton L, Guermazi A, et al. Knee kinematics and kinetics are associated with early patellofemoral osteoarthritis following anterior cruciate ligament reconstruction. Osteoarthr Cartilage. 2016;24(9):15481553. PubMed ID: 27188685 doi:10.1016/j.joca.2016.05.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Schache AG, Baker R. On the expression of joint moments during gait. Gait Posture. 2007;25(3):440452. PubMed ID: 17011192 doi:10.1016/j.gaitpost.2006.05.018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Delp SL, Anderson FC, Arnold AS, et al. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 2007;54(11):19401950. PubMed ID: 18018689 doi:10.1109/TBME.2007.901024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Lu TW, O’Connor JJ. Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. J Biomech. 1999;32(2):129134. PubMed ID: 10052917 doi:10.1016/S0021-9290(98)00158-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Anderson FC, Pandy MG. Static and dynamic optimization solutions for gait are practically equivalent. J Biomech. 2001;34(2):153161. PubMed ID: 11165278 doi:10.1016/S0021-9290(00)00155-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Rudolph KS, Axe MJ, Snyder-Mackler L. Dynamic stability after ACL injury: who can hop? Knee Surg Sports Traumatol Arthrosc. 2000;8(5):262269. PubMed ID: 11061293 doi:10.1007/s001670000130

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Prilutsky BI, Zatsiorsky VM. Tendon action of two-joint muscles: transfer of mechanical energy between joints during jumping, landing, and running. J Biomech. 1994;27(1):2534. PubMed ID: 8106533 doi:10.1016/0021-9290(94)90029-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Pandy MG, Andriacchi TP. Muscle and joint function in human locomotion. Annu Rev Biomed Eng. 2010;12(1):401433. PubMed ID: 20617942 doi:10.1146/annurev-bioeng-070909-105259

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Iida Y, Kanehisa H, Inaba Y, Nakazawa K. Activity modulations of trunk and lower limb muscles during impact-absorbing landing. J Electromyogr Kinesiol. 2011;21(4):602609. PubMed ID: 21549617 doi:10.1016/j.jelekin.2011.04.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Neptune RR, Wright IC, van den Bogert AJ. Muscle coordination and function during cutting movements. Med Sci Sports Exerc. 1999;31(2):294302. doi:10.1097/00005768-199902000-00014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Oberlander KD, Bruggemann GP, Hoher J, Karamanidis K. Altered landing mechanics in ACL-reconstructed patients. Med Sci Sports Exerc. 2013;45(3):506513.

  • 38.

    Orishimo KF, Kremenic IJ, Mullaney MJ, McHugh MP, Nicholas SJ. Adaptations in single-leg hop biomechanics following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc. 2010;18(11):15871593. PubMed ID: 20549185 doi:10.1007/s00167-010-1185-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Lepley LK, Wojtys EM, Palmieri-Smith RM. Combination of eccentric exercise and neuromuscular electrical stimulation to improve biomechanical limb symmetry after anterior cruciate ligament reconstruction. Clin Biomech. 2015;30(7):738747. doi:10.1016/j.clinbiomech.2015.04.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Zajac FE, Neptune RR, Kautz SA. Biomechanics and muscle coordination of human walking. Part I: introduction to concepts, power transfer, dynamics and simulations. Gait Posture. 2002;16(3):215232. PubMed ID: 12443946 doi:10.1016/S0966-6362(02)00068-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Keays SL, Bullock-Saxton JE, Keays AC, Newcombe PA, Bullock MI. A 6-year follow-up of the effect of graft site on strength, stability, range of motion, function, and joint degeneration after anterior cruciate ligament reconstruction: patellar tendon versus semitendinosus and Gracilis tendon graft. Am J Sports Med. 2007;35(5):729739. PubMed ID: 17322130 doi:10.1177/0363546506298277

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Mokhtarzadeh H, Perraton L, Fok L, et al. A comparison of optimisation methods and knee joint degrees of freedom on muscle force predictions during single-leg hop landings. J Biomech. 2014;47(12):28632868. PubMed ID: 25129166 doi:10.1016/j.jbiomech.2014.07.027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 295 295 141
Full Text Views 18 18 10
PDF Downloads 10 10 5