Anterior–Posterior Balance Perturbation Protocol Using Lifelike Virtual Reality Environment

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Virtual reality (VR) paradigms have proved to be a valid method to challenge and perturb balance. There is little consensus in the literature on the best protocol design to perturb balance and induce postural sway. Current VR interventions still lack a well-defined standardized metric to generate a virtual environment that can perturb balance in an efficacious, lifelike, and repeatable manner. The objective of this study was to investigate different configurations of amplitude and frequency in an anterior–posterior translation VR environment, that is, lifelike and scaled. Thirteen young adults with no conditions affecting balance were recruited. Balance was challenged by anterior–posterior sinusoidal movement of the lab image within the VR headset. Four different amplitudes of the sinusoidal movement were tested: 1, 5, 10, and 20 cm, with each amplitude being presented at 2 test frequencies : 0.5 and 0.25 Hz. Mean center of pressure velocity was significantly greater than baseline at 0.5 Hz and amplitudes of 10 and 20 cm. Mean center of pressure at approximate entropy was greater than baseline at 0.5 Hz and amplitude of 20 cm. The results suggest that sinusoidal movement of a realistic VR environment produces altered balance compared with baseline quiet standing, but only under specific movement parameters.

The authors are with the Department of Kinesiology, East Carolina University, Greenville, NC, USA.

Domire (domirez@ecu.edu) is corresponding author.
  • 1.

    Juras G, Brachman A, Michalska J, et al. Standards of virtual reality application in balance training programs in clinical practice: a systematic review. Games Health J. 2019;8(2):101111. PubMed ID: 30239217 doi:10.1089/g4h.2018.0034

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Cano Porras D, Siemonsma P, Inzelberg R, Zeilig G, Plotnik M. Advantages of virtual reality in the rehabilitation of balance and gait. Neurology. 2018;90(22):10171025. PubMed ID: 29720544 doi:10.1212/WNL.0000000000005603

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Dijkstra TMH, Schoner G, Gielen CCAM. Temporal stability of the action-perception cycle for postural control in a moving visual environment. Exp Brain Res. 1994;97(3):477486. PubMed ID: 8187859 doi:10.1007/BF00241542

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Haibach PS, Slobounov SM, Slobounova ES, Newell KM. Aging and time-to-postural stability following a visual perturbation. Aging Clin Exp Res. 2007;19(6):438443. PubMed ID: 18172364 doi:10.1007/BF03324728

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    O’Connor SM, Kuo AD. Direction-dependent control of balance during walking and standing. J Neurophysiol. 2009;102(3):14111419. doi:10.1152/jn.00131.2009

  • 6.

    Dennison M, D’Zmura M. Effects of unexpected visual motion on postural sway and motion sickness. Appl Ergon. 2018;71:916. PubMed ID: 29764619 doi:10.1016/j.apergo.2018.03.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Horlings CGC, Carpenter MG, Küng UM, Honegger F, Wiederhold B, Allum JHJ. Influence of virtual reality on postural stability during movements of quiet stance. Neurosci Lett. 2009;451(3):227231. PubMed ID: 19146921 doi:10.1016/j.neulet.2008.12.057

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Chiarovano E, Wang W, Rogers SJ, MacDougall HG, Curthoys IS, de Waele C. Balance in virtual reality: effect of age and bilateral vestibular loss. Front Neurol. 2017;8:5. PubMed ID: 28163693 doi:10.3389/fneur.2017.00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Luo H, Wang X, Fan M, et al. The effect of visual stimuli on stability and complexity of postural control. Front Neurol. 2018;9:48. PubMed ID: 29472888 doi:10.3389/fneur.2018.00048

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Maki BE, Holliday PJ, Fernie GR. Aging and postural control. J Am Geriatr Soc. 1990;38(1):19. PubMed ID: 2295764 doi:10.1111/j.1532-5415.1990.tb01588.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Bernstein NA. The Co-Ordination and Regulation of Movements. 1st ed. Oxford, New York: Pergamon Press; 1967.

  • 12.

    Hu X, Newell KM. Modeling constraints to redundancy in bimanual force coordination. J Neurophysiol. 2011;105(5):21692180. PubMed ID: 21346203 doi:10.1152/jn.01086.2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Slater M, Usoh M, Chrysanthou Y. The influence of dynamic shadows on presence in immersive virtual environments. In: Göbel M, ed. Virtual Environments ’95. Eurographics. Vienna, Austria: Springer; 1995:821. doi:10.1007/978-3-7091-9433-1_2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Slater M, Usoh M, Steed A. Depth of presence in virtual environments. Presence Teleoperators Virtual Environ. 1994;3(2):130144. doi:10.1162/pres.1994.3.2.130

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Mestre D, Vercher JL. Immersion and presence. In: Fuchs P, Moreau G, Guitton P, eds. Virtual Reality: Concepts and Technologies. Boca Raton, FL: CRC Press; 2011. doi:10.1201/b11612-8

    • Search Google Scholar
    • Export Citation
  • 16.

    Sigman M, Dehaene S. Dynamics of the central bottleneck: dual-task and task uncertainty. PLoS Biol. 2006;4(7):e220. PubMed ID: 16787105 doi:10.1371/journal.pbio.0040220

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Rushton SK, Riddell PM. Developing visual systems and exposure to virtual reality and stereo displays: some concerns and speculations about the demands on accommodation and vergence. Appl Ergon. 1999;30(1):6978. PubMed ID: 10098818 doi:10.1016/S0003-6870(98)00044-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Ellis SR. Presence of mind: a reaction to Thomas Sheridan’s “further musings on the psychophysics off presence.” Presence Teleoperators Virtual Environ. 1996;5(2):247259. doi:10.1162/pres.1996.5.2.247

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Low DC, Walsh GS, Arkesteijn M. Effectiveness of exercise interventions to improve postural control in older adults: a systematic review and meta-analyses of centre of pressure measurements. Sport Med. 2017;47(1):101112. doi:10.1007/s40279-016-0559-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    McGregor SJ, Armstrong WJ, Yaggie JA, et al. Lower extremity fatigue increases complexity of postural control during a single-legged stance. J Neuroeng Rehabil. 2011;8(1):43. doi:10.1186/1743-0003-8-43

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Fino PC, Mojdehi AR, Adjerid K, Habibi M, Lockhart TE, Ross SD. Comparing postural stability entropy analyses to differentiate fallers and non-fallers. Ann Biomed Eng. 2016;44(5):16361645. PubMed ID: 26464267 doi:10.1007/s10439-015-1479-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Morrison S, Colberg SR, Parson HK, Vinik AI. Relation between risk of falling and postural sway complexity in diabetes. Gait Posture. 2012;35(4):662668. PubMed ID: 22269128 doi:10.1016/j.gaitpost.2011.12.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Richards JT, Selgrade BP, Qiao M, Plummer P, Wikstrom EA, Franz JR. Time-dependent tuning of balance control and aftereffects following optical flow perturbation training in older adults. J Neuroeng Rehabil. 2019;16(1):81. PubMed ID: 31262319 doi:10.1186/s12984-019-0555-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 205 205 57
Full Text Views 16 16 1
PDF Downloads 7 7 0