Effects of Metatarsal Work Boots on Gait During Level and Inclined Walking

in Journal of Applied Biomechanics
View More View Less
  • 1 National Institute for Occupational Safety and Health
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Footwear plays an important role in worker safety. Work boots with safety toes are often utilized at mine sites to protect workers from hazards. Increasingly, mining operations require metatarsal guards in addition to safety toe protection in boots. While these guards provide additional protection, the impact of metatarsal guards on gait are unknown. This study aimed to measure the effects of 4 safety work boots, steel toe, and steel toe with metatarsal protection in wader- and hiker-style boots, on level and inclined walking gait characteristics, during ascent and descent. A total of 10 participants completed this study. A motion capture system measured kinematics that allowed for the calculation of key gait parameters. Results indicated that gait parameters changed due to incline, similar to previous literature. Wader-style work boots reduced ankle range of motion when ascending an incline. Hip, knee, and ankle ranges of motion were also reduced during descent for this style of boot. Wader-style boots with metatarsal guards led to the smallest ankle range of motion when descending an inclined walkway. From these results, it is likely that boot style affects gait parameters and may impact a miner’s risk for slips, trips, or falls.

The authors are with the Pittsburgh Mining Research Division, National Institute for Occupational Safety and Health, Pittsburgh, PA, USA.

Kocher (LKocher@cdc.gov) is corresponding author.
  • 1.

    Pollard JP, Merrill J, Nasarwanji MF. Metatarsal boot safety when ascending stairs. Paper presented at: IIE Annual Conference. Proceedings, Pittsburgh, PA; 2017.

    • Export Citation
  • 2.

    Dobson JA, Riddiford-Harland DL, Bell AF, Steele JR. Work boot design affects the way workers walk: a systematic review of the literature. Appl Ergon. 2017;61:5368. PubMed ID: 28237020 doi:10.1016/j.apergo.2017.01.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Menant JC, Perry SD, Steele JR, Menz HB, Munro BJ, Lord SR. Effects of shoe characteristics on dynamic stability when walking on even and uneven surfaces in young and older people. Arch Phys Med Rehabil. 2008;89(10):19701976. PubMed ID: 18760402 doi:10.1016/j.apmr.2008.02.031

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Moyer BE, Chambers AJ, Redfern MS, Cham R.Gait parameters as predictors of slip severity in younger and older adults. Ergonomics. 2006;49(4):329343. PubMed ID: 16690563 doi:10.1080/00140130500478553

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Nurse MA, Hulliger M, Wakeling JM, Nigg BM, Stefanyshyn DJ. Changing the texture of footwear can alter gait patterns. J Electromyogr Kinesiol. 2005;15(5):496506. PubMed ID: 15935961 doi:10.1016/j.jelekin.2004.12.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Wu G, Chiang JH. The significance of somatosensory stimulations to the human foot in the control of postural reflexes. Exp Brain Res. 1997;114(1):163169. PubMed ID: 9125462 doi:10.1007/PL00005616

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Robbins S, Waked E, Gouw GJ, McClaran J. Athletic footwear affects balance in men. Br J Sports Med. 1994;28(2):117122. PubMed ID: 7921911 doi:10.1136/bjsm.28.2.117

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Majumdar D, Banerjee PK, Majumdar D, Pal M, Kumar R, Selvamurthy W. Temporal spatial parameters of gait with barefoot, bathroom slippers and military boots. Indian J Physiol Pharmacol. 2006;50(1):3340. PubMed ID: 16850901

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Redfern MS, Cham R, Gielo-Perczak K, et al. Biomechanics of slips. Ergonomics. 2001;44(13):11381166. PubMed ID: 11794762 doi:10.1080/00140130110085547

  • 10.

    Pollard J, Kosmoski C, Porter WL, Kocher L, Whitson A, Nasarwanji M. Operators’ views of mobile equipment ingress and egress safety. Int J Ind Ergon. 2019;72:272280. doi:10.1016/j.ergon.2019.06.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Hamill J, Bensel CK. Biomechanical Analysis of Military Boots: Phase 2. Volume 2. Human User Testing of Military and Commercial Footwear. Technical Report, Natick, MA: U.S. Army Natick Research; 1996. Report No: NATICK-TR-96/011-VOL-1.

    • Search Google Scholar
    • Export Citation
  • 12.

    Park H, Kim S, Miles M, Bauer A, Stull J, Trejo H. Impact of firefighter gear on lower body range of motion. Int J Clothing Sci Technol. 2015;27(2):315334. doi:10.1108/IJCST-01-2014-0011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Simeonov P, Hsiao H, Powers J, et al. Footwear effects on walking balance at elevation. Ergonomics. 2008;51(12):18851905. PubMed ID: 19034784 doi:10.1080/00140130802562625

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Cikajlo I, Matjačić Z. The influence of boot stiffness on gait kinematics and kinetics during stance phase. Ergonomics. 2007;50(12):21712182. PubMed ID: 17886013 doi:10.1080/00140130701582104

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Böhm H, Hösl M. Effect of boot shaft stiffness on stability joint energy and muscular co-contraction during walking on uneven surface. J Biomech. 2010;43(13):24672472. doi:10.1016/j.jbiomech.2010.05.029

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Horak FB, Nashner LM. Central programming of postural movements: adaptation to altered support-surface configurations. J Neurophysiol. 1986;55(6):13691381. PubMed ID: 3734861 doi:10.1152/jn.1986.55.6.1369

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Andriacchi TP, Andersson GB, Fermier RW, Stern D, Galante JO. A study of lower-limb mechanics during stair-climbing. J Bone Joint Surg Am. 1980;62(5):749757. PubMed ID: 7391098 doi:10.2106/00004623-198062050-00008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Benson LC, Cobb SC, Hyngstrom AS, Keenan KG, Luo J, O’Connor KM. Identifying trippers and non-trippers based on knee kinematics during obstacle-free walking. Hum Mov Sci. 2018;62:5866. PubMed ID: 30245267 doi:10.1016/j.humov.2018.09.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Chiou SS, Turner N, Zwiener J, Weaver DL, Haskell WE. Effect of boot weight and sole flexibility on gait and physiological responses of firefighters in stepping over obstacles. Hum Factors. 2012;54(3):373386. PubMed ID: 22768640 doi:10.1177/0018720811433464

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Garner JC, Wade C, Garten R, Chander H, Acevedo E. The influence of firefighter boot type on balance. Int J Ind Ergon. 2013;43(1):7781. doi:10.1016/j.ergon.2012.11.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Sinclair J, Taylor PJ. Influence of new military athletic footwear on the kinetics and kinematics of running in relation to army boots. J Strength Cond Res. 2014;28(10):29002908. PubMed ID: 24714532 doi:10.1519/JSC.0000000000000477

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Pollard JP, Heberger JR, Dempsey PG. Slip potential for commonly used inclined grated metal walkways. IIE Trans Occup. 2015;3(2):115126. PubMed ID: 26779388

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    C-Motion. Marker set guidelines. 2017. http://www.c-motion.com/v3dwiki/index.php?title=Marker_Set_Guidelines. Accessed July 3, 2018.

    • Export Citation
  • 24.

    O’Connor CM, Thorpe SK, O’Malley MJ, Vaughan CL. Automatic detection of gait events using kinematic data. Gait Posture. 2007;25(3):469474. doi:10.1016/j.gaitpost.2006.05.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Vette AH, Watt JM, Lewicke J, et al. The utility of normative foot floor angle data in assessing toe-walking. Foot. 2018;37:6570. doi:10.1016/j.foot.2018.07.003

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 573 573 419
Full Text Views 20 20 1
PDF Downloads 13 13 0