Standardized Lab Shoes Do Not Decrease Loading Rate Variability in Recreational Runners

Click name to view affiliation

Jessica G. Hunter University of Maryland

Search for other papers by Jessica G. Hunter in
Current site
Google Scholar
PubMed
Close
*
,
Alexander M.B. Smith University of Maryland

Search for other papers by Alexander M.B. Smith in
Current site
Google Scholar
PubMed
Close
*
,
Lena M. Sciarratta University of Maryland

Search for other papers by Lena M. Sciarratta in
Current site
Google Scholar
PubMed
Close
*
,
Stephen Suydam Algovation, LLC

Search for other papers by Stephen Suydam in
Current site
Google Scholar
PubMed
Close
*
,
Jae Kun Shim University of Maryland
Kyung Hee University

Search for other papers by Jae Kun Shim in
Current site
Google Scholar
PubMed
Close
*
, and
Ross H. Miller University of Maryland

Search for other papers by Ross H. Miller in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Studies of running mechanics often use a standardized lab shoe, ostensibly to reduce variance between subjects; however, this may induce unnatural running mechanics. The purpose of this study was to compare the step rate, vertical average loading rate, and ground contact time when running in standardized lab shoes versus participants’ normal running shoes. Ground reaction forces were measured while the participants ran overground in both shoe conditions at a self-selected speed. The Student’s t-test revealed that the vertical average loading rate magnitude was smaller in lab shoes versus normal shoes (42.09 [11.08] vs 47.35 [10.81] body weight/s, P = .013), while the step rate (170.92 [9.43] vs 168.98 [9.63] steps/min, P = .053) and ground contact time were similar (253 [25] vs 251 [20] ms, P = .5227) and the variance of all outcomes was similar in lab shoes versus normal shoes. Our results indicate that using standardized lab shoes during testing may underestimate the loads runners actually experience during their typical mileage.

Hunter, Smith, Sciarratta, Shim, and Miller are with the Department of Kinesiology, University of Maryland, College Park, MD, USA. Suydam is with Algovation, LLC, Chicago, IL, USA. Shim and Miller are also with the Neuroscience & Cognitive Science Program, University of Maryland, College Park, MD, USA. Shim is also with the Department of Mechanical Engineering, Kyung Hee University, Seoul, South Korea.

Hunter (jghunter@umd.edu) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Milner CE, Ferber R, Pollard CD, Hamill J, Davis IS. Biomechanical factors associated with tibial stress fracture in female runners. Med Sci Sports Exerc. 2006;38(2):323328. PubMed ID: 16531902 doi:10.1249/01.mss.0000183477.75808.92

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Franz JR, Wierzbinski CM, Kram R. Metabolic cost of running barefoot versus shod: is lighter better? Med Sci Sports Exerc. 2012;44(8):15191525. PubMed ID: 22367745 doi:10.1249/MSS.0b013e3182514a88

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Gruber AH, Umberger BR, Braun B, Hamill J. Economy and rate of carbohydrate oxidation during running with rearfoot and forefoot strike patterns. J Appl Physiol. 2013;115(2):194201. PubMed ID: 23681915 doi:10.1152/japplphysiol.01437.2012

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Davis IS, Bowser BJ, Mullineaux DR. Greater vertical impact loading in female runners with medically diagnosed injuries: a prospective investigation. Br J Sports Med. 2016;50(14):887892. PubMed ID: 26644428 doi:10.1136/bjsports-2015-094579

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Hamill J, Bates BT, Knutzen KM, Sawhill JA. Variations in ground reaction force parameters at different running speeds. Hum Mov Sci. 1983;2:4756. doi:10.1016/0167-9457(83)90005-2

    • Search Google Scholar
    • Export Citation
  • 6.

    Reinschmidt C, Nigg BM. Current issues in the design of running and court shoes. Sport Sport. 2000;14:7184.

  • 7.

    Hreljac A. Impact and overuse injuries in runners. Med Sci Sports Exerc. 2004;36(5):845849. PubMed ID: 15126720 doi:10.1249/01.MSS.0000126803.66636.DD

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Munro CF, Miller DI, Fuglevand AJ. Ground reaction forces in running: a reexamination. J Biomech. 1987;20(2):147155. PubMed ID: 3571295 doi:10.1016/0021-9290(87)90306-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Nigg BM, Bahlsen H, Leuthi S, Stokes S. The influence of running velocity and midsole hardness on external impact forces in heel-toe-running. J Biomech. 1987;20(10):951959. PubMed ID: 3693376 doi:10.1016/0021-9290(87)90324-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Hunter JG, Garcia GL, Shim JK, Miller RH. Fast running does not contribute more to cumulative load than slow running. Med Sci Sport Exerc. 2019;51(6):11781185. doi:10.1249/MSS.0000000000001888

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Mercer JA, Horsch S. Heel-toe running: a new look at the influence of foot strike pattern on impact force. J Exerc Sci Fit. 2015;13(1):2934. PubMed ID: 29541096 doi:10.1016/j.jesf.2014.12.001

    • Search Google Scholar
    • Export Citation
  • 12.

    Orendurff MS, Kobayashi T, Tulchin-Francis K, et al. A little bit faster: lower extremity joint kinematics and kinetics as recreational runners achieve faster speeds. J Biomech. 2018;71:167175. PubMed ID: 29472010 doi:10.1016/j.jbiomech.2018.02.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Futrell EE, Jamison ST, Tenforde AS, Davis IS. Relationships between habitual cadence, footstrike, and vertical load rates in runners. Med Sci Sports Exerc. 2018;50(9):18371841. PubMed ID: 29614001 doi:10.1249/MSS.0000000000001629

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Chan ZYS, Zhang JH, Au IPH, et al. Gait retraining for the reduction of injury occurrence in novice distance runners: 1-year follow-up of a randomized controlled trial. Am J Sports Med. 2018;46(2):388395. PubMed ID: 29065279 doi:10.1177/0363546517736277

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Chambon N, Sevrez V, Ly QH, Guéguen N, Berton E, Rao G. Aging of running shoes and its effect on mechanical and biomechanical variables: implications for runners. J Sports Sci. 2014;32(11):10131022. PubMed ID: 24576090 doi:10.1080/02640414.2014.886127

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Udofa AB, Clark KP, Ryan LJ, Weyand PG. Running ground reaction forces across footwear conditions are predicted from the motion of two body mass components. J Appl Physiol. 2019;126(5):13151325. PubMed ID: 30763160 doi:10.1152/japplphysiol.00925.2018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Addison BJ, Lieberman DE. Tradeoffs between impact loading rate, vertical impulse and effective mass for walkers and heel strike runners wearing footwear of varying stiffness. J Biomech. 2015;48(7):13181324. PubMed ID: 25814181 doi:10.1016/j.jbiomech.2015.01.029

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Mann R, Malisoux L, Urhausen A, Statham A, Meijer K, Theisen D. The effect of shoe type and fatigue on strike index and spatiotemporal parameters of running. Gait Posture. 2015;42(1):9195. PubMed ID: 25953506 doi:10.1016/j.gaitpost.2015.04.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Kong PW, Candelaria NG, Smith DR. Running in new and worn shoes: a comparison of three types of cushioning footwear. Br J Sports Med. 2009;43(10):745749. PubMed ID: 18801775 doi:10.1136/bjsm.2008.047761

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Bates BT. An assessment of subject variability, subject-shoe interaction, and the evaluation of running shoes using ground reaction force data. J Biomech. 1983;16(3):181191. PubMed ID: 6863333 doi:10.1016/0021-9290(83)90125-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Altman A, & Davis I. A kinematic method for footstrike pattern detection in barefoot and shod runners. Gait Posture. 2012;35(2):298300. PubMed ID: 22075193 doi:10.1016/j.gaitpost.2011.09.104

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Krupenevich RL, Pruziner AL, Miller RH. Knee joint loading during single-leg forward hopping. Med Sci Sports Exerc. 2017;49(2):327332. PubMed ID: 27669448 doi:10.1249/MSS.0000000000001098

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Blackmore T, Willy RW, Creaby MW. The high frequency component of the vertical ground reaction force is a valid surrogate measure of the impact peak. J Biomech. 2016;49(3):479483. PubMed ID: 26783094 doi:10.1016/j.jbiomech.2015.12.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing; Vienna, Austria. 2013. www.R-project.org/.

    • Search Google Scholar
    • Export Citation
  • 25.

    Fox J, Weisberg S. An {R} Companion to Applied Regression. 2nd ed. 2011. http://socserv.socsci.mcmaster.ca/jfox/Books/Companion.

  • 26.

    Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol. 2013;4:863. PubMed ID: 24324449 doi:10.3389/fpsyg.2013.00863

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Willwacher S, König M, Braunstein B, Goldmann JP, Brüggemann GP. The gearing function of running shoe longitudinal bending stiffness. Gait Posture. 2014;40(3):386390. PubMed ID: 24882222 doi:10.1016/j.gaitpost.2014.05.005

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Stefanyshyn DJ, Stergiou P, Lun VMY, Meeuwisse WH, Worobets JT. Knee angular impulse as a predictor of patellofemoral pain in runners. Am J Sports Med. 2006;34(11):18441851. PubMed ID: 16735584 doi:10.1177/0363546506288753

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Hobara H, Baum BS, Kwon HJ, et al. Amputee locomotion: lower extremity loading using running-specific prostheses. Gait Posture. 2014;39(1):386390. PubMed ID: 24035367 doi:10.1016/j.gaitpost.2013.08.010

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Nigg BM, Vienneau J, Smith AC, Trudeau MB, Mohr M, Nigg SR. The preferred movement path paradigm: Influence of running shoes on joint movement. Med Sci Sports Exerc. 2017;49(8):16411648. PubMed ID: 28277405 doi:10.1249/MSS.0000000000001260

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Heiderscheit BC, Chumanov ES, Michalski MP, Wille CM, Ryan MB. Effects of step rate manipulation on joint mechanics during running. Med Sci Sports Exerc. 2011;43(2):296302. PubMed ID: 20581720 doi:10.1249/MSS.0b013e3181ebedf4

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Kobsar D, Clermont CA, Ferber R, Osis ST, Benson LC. Running patterns for male and female competitive and recreational runners based on accelerometer data. J Sports Sci. 2018;37(2):204211. doi:10.1080/02640414.2018.1488518

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3120 517 23
Full Text Views 384 42 9
PDF Downloads 138 20 5