Movement Coordination During Humeral Elevation in Individuals With Newly Acquired Spinal Cord Injury

in Journal of Applied Biomechanics
View More View Less
  • 1 Drexel University
  • 2 Temple University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Humeral elevation is a critical motion for individuals who use a manual wheelchair given that, in a typical day, wheelchair users reach overhead 5 times more often than able-bodied controls. Kinematic analyses in individuals with chronic spinal cord injury (SCI) have focused on weight-bearing tasks rather than overhead reaching. This technical report presents shoulder movement coordination during overhead reaching in individuals with newly acquired SCI. Eight volunteers with acute SCI and 8 matched, uninjured controls participated. Three-dimensional kinematics were collected during seated, humeral elevation. Scapular and thoracic rotations during humeral elevation were averaged across repetitions. The linear relationship of scapular upward rotation to humeral elevation provided movement coordination analysis. Maximal elevation was reduced in SCI with increased thoracic kyphosis. Medium to large effect sizes were found at each elevation angle, with reduced scapular external rotation, posterior tilt, and increased thoracic kyphosis for those with SCI. The linear relationship occurred later and within a significantly (P = .02) smaller range of humeral elevation in SCI. Altered movement coordination, including a diminished linear association of scapular upward rotation and humeral elevation (scapulohumeral rhythm), is found with reduced maximal elevation and increased thoracic kyphosis during overhead reaching tasks in those with acute SCI.

Finley and Euiler are with the Department of Physical Therapy and Rehabilitation Science, Drexel University, Philadelphia, PA, USA. Hiremath is with the Department of Health and Rehabilitation Sciences, Temple University, Philadelphia, PA, USA. Sarver is with the School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.

Finley (maf378@drexel.edu) is corresponding author.

Supplementary Materials

    • Supplementary Material (PDF 244 KB)
  • 1.

    National Spinal Cord Injury Statistical Center, Facts and Figures at a Glance. Birmingham, AL: University of Alabama at Birmingham; 2019.

    • Search Google Scholar
    • Export Citation
  • 2.

    Requejo PS, Mulroy SJ, Haubert LL, Newsam CJ, Gronley JK, Perry J. Evidence-based strategies to preserve shoulder function in manual wheelchair users with spinal cord injury. Top Spinal Cord Inj Rehabil. 2008;13(4):86119. doi:10.1310/sci1304-86

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Bayley JC, Cochran TP, Sledge CB. The weight-bearing shoulder. The impingement syndrome in paraplegics. J Bone Joint Surg Am. 1987;69(5):676678. PubMed ID: 3597466 doi:10.2106/00004623-198769050-00006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Gellman H, Sie I, Waters RL. Late complications of the weight-bearing upper extremity in the paraplegic patient. Clin Orthop Relat Res. 1988;233:132135.

    • Search Google Scholar
    • Export Citation
  • 5.

    Nichols PJ, Norman PA, Ennis JR. Wheelchair user’s shoulder? Shoulder pain in patients with spinal cord lesions. Scand J Rehabil Med. 1979;11(1):2932. PubMed ID: 419395

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    van Drongelen S, de Groot S, Veeger HE, et al. Upper extremity musculoskeletal pain during and after rehabilitation in wheelchair-using persons with a spinal cord injury. Spinal Cord. 2006;44(3):152159. doi:10.1038/sj.sc.3101826

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    McCasland LD, Budiman-Mak E, Weaver FM, Adams E, Miskevics S. Shoulder pain in the traumatically injured spinal cord patient: evaluation of risk factors and function. J Clin Rheumatol. 2006;12(4):179186. PubMed ID: 16891921 doi:10.1097/01.rhu.0000230532.54403.25

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Eriks-Hoogland I, de Groot S, Snoek G, Stucki G, Post M, van der Woude L. Association of shoulder problems in persons with spinal cord injury at discharge from inpatient rehabilitation with activities and participation 5 years later. Arch Phys Med Rehabil. 2016;97(1):8491. PubMed ID: 26376446 doi:10.1016/j.apmr.2015.08.432

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Eriks-Hoogland IE, Hoekstra T, de Groot S, Stucki G, Post MW, van der Woude LH. Trajectories of musculoskeletal shoulder pain after spinal cord injury: identification and predictors. J Spinal Cord Med. 2014;37(3):288298. PubMed ID: 24621031 doi:10.1179/2045772313Y.0000000168

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Ludewig PM, Cook TM. Alterations in shoulder kinematics and associated muscle activity in people with symptoms of shoulder impingement. Phys Ther. 2000;80(3):276291. PubMed ID: 10696154 doi:10.1093/ptj/80.3.276

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Lukasiewicz AC, McClure P, Michener L, Pratt N, Sennett B. Comparison of 3-dimensional scapular position and orientation between subjects with and without shoulder impingement. J Orthop Sports Phys Ther. 1999;29(10):574586. discussion 584–576. PubMed ID: 10560066 doi:10.2519/jospt.1999.29.10.574

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Ludewig PM, Reynolds JF. The association of scapular kinematics and glenohumeral joint pathologies. J Orthop Sports Phys Ther. 2009;39(2):90104. PubMed ID: 19194022 doi:10.2519/jospt.2009.2808

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    McClure PW, Michener LA, Karduna AR. Shoulder function and 3-dimensional scapular kinematics in people with and without shoulder impingement syndrome. Phys Ther. 2006;86(8):10751090. PubMed ID: 16879042 doi:10.1093/ptj/86.8.1075

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Fayad F, Roby-Brami A, Yazbeck C, et al. Three-dimensional scapular kinematics and scapulohumeral rhythm in patients with glenohumeral osteoarthritis or frozen shoulder. J Biomech. 2008;41(2):326332. PubMed ID: 17949728 doi:10.1016/j.jbiomech.2007.09.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Rundquist PJ, Anderson DD, Guanche CA, Ludewig PM. Shoulder kinematics in subjects with frozen shoulder. Arch Phys Med Rehabil. 2003;84(10):14731479. PubMed ID: 14586914 doi:10.1016/S0003-9993(03)00359-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Rundquist PJ, Dumit M, Hartley J, Schultz K, Finley MA. Three-dimensional shoulder complex kinematics in individuals with upper extremity impairment from chronic stroke. Disabil Rehabil. 2012;34(5):402407. PubMed ID: 22351959 doi:10.3109/09638288.2011.607214

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Gagnon D, Nadeau S, Noreau L, Eng JJ, Gravel D. Trunk and upper extremity kinematics during sitting pivot transfers performed by individuals with spinal cord injury. Clin Biomech. 2008;23(3):279290. doi:10.1016/j.clinbiomech.2007.09.017

    • Search Google Scholar
    • Export Citation
  • 18.

    Finley MA, McQuade KJ, Rodgers MM. Scapular kinematics during transfers in manual wheelchair users with and without shoulder impingement. Clin Biomech. 2005;20(1):3240. doi:10.1016/j.clinbiomech.2004.06.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Nawoczenski DA, Riek LM, Greco L, Staiti K, Ludewig PM. Effect of shoulder pain on shoulder kinematics during weight-bearing tasks in persons with spinal cord injury. Arch Phys Med Rehabil. 2012;93(8):14211430. PubMed ID: 22481126 doi:10.1016/j.apmr.2012.02.034

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Riek L, Ludewig PM, Nawoczenski D. Comparative shoulder kinematics during free standing, standing depression lifts and daily functional activities in persons with paraplegia: considerations for shoulder health. Spinal Cord. 2008;46(5):335. PubMed ID: 18026174 doi:10.1038/sj.sc.3102140

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Kirshblum S, Waring W 3rd. Updates for the international standards for neurological classification of spinal cord injury. Phys Med Rehabil Clin N Am. 2014;25(3):505517. PubMed ID: 25064785 doi:10.1016/j.pmr.2014.04.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Neer CS 2nd. Impingement lesions. Clin Orthop Relat Res. 1983;173:7077.

  • 23.

    Hawkins RJ, Kennedy JC. Impingement syndrome in athletes. Am J Sports Med. 1980;8(3):151158. PubMed ID: 7377445 doi:10.1177/036354658000800302

  • 24.

    Bennett WF. Specificity of the speed’s test: arthroscopic technique for evaluating the biceps tendon at the level of the bicipital groove. Arthroscopy. 1998;14(8):789796. PubMed ID: 9848587 doi:10.1016/S0749-8063(98)70012-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Amasay T, Karduna AR. Scapular kinematics in constrained and functional upper extremity movements. J Orthop Sports Phys Ther. 2009;39(8):618627. PubMed ID: 19648720 doi:10.2519/jospt.2009.2788

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Accuracy and resolution manual. 2014; www.themotionmonitor.com. Accessed January 15, 2014.

    • Export Citation
  • 27.

    Wu G, van der Helm FC, Veeger HE, et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—part II: shoulder, elbow, wrist and hand. J Biomech. 2005;38(5):981992. PubMed ID: 15844264 doi:10.1016/j.jbiomech.2004.05.042

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Finley MA, Lee RY. Effect of sitting posture on 3-dimensional scapular kinematics measured by skin-mounted electromagnetic tracking sensors. Arch Phys Med Rehabil. 2003;84(4):563568. PubMed ID: 12690596 doi:10.1053/apmr.2003.50087

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 32nd ed. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988.

  • 30.

    Hegedus EJ, Cook C, Lewis J, Wright A, Park JY. Combining orthopedic special tests to improve diagnosis of shoulder pathology. Phys Ther Sport. 2015;16(2):8792. PubMed ID: 25178255 doi:10.1016/j.ptsp.2014.08.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Hegedus EJ, Goode AP, Cook CE, et al. Which physical examination tests provide clinicians with the most value when examining the shoulder? Update of a systematic review with meta-analysis of individual tests. Br J Sports Med. 2012;46(14):964978. PubMed ID: 22773322 doi:10.1136/bjsports-2012-091066

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Ballinger DA, Rintala DH, Hart KA. The relation of shoulder pain and range-of-motion problems to functional limitations, disability, and perceived health of men with spinal cord injury: a multifaceted longitudinal study. Arch Phys Med Rehabil. 2000;81(12):15751581. PubMed ID: 11128892 doi:10.1053/apmr.2000.18216

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Burnham RS, May L, Nelson E, Steadward R, Reid DC. Shoulder pain in wheelchair athletes. The role of muscle imbalance. Am J Sports Med. 1993;21(2):238242. PubMed ID: 8465919 doi:10.1177/036354659302100213

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Curtis KA, Tyner TM, Zachary L, et al. Effect of a standard exercise protocol on shoulder pain in long-term wheelchair users. Spinal Cord. 1999;37(6):421429. PubMed ID: 10432262 doi:10.1038/sj.sc.3100860

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Borstad JD. Resting position variables at the shoulder: evidence to support a posture-impairment association. Phys Ther. 2006;86(4):549557. PubMed ID: 16579671 doi:10.1093/ptj/86.4.549

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Borstad JD, Ludewig PM. Comparison of scapular kinematics between elevation and lowering of the arm in the scapular plane. Clin Biomech. 2002;17(9–10):650659. doi:10.1016/S0268-0033(02)00136-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Doody SG, Freedman L, Waterland JC. Shoulder movements during abduction in the scapular plane. Arch Phys Med Rehabil. 1970;51(10):595604. PubMed ID: 5484648

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Poppen NK, Walker PS. Normal and abnormal motion of the shoulder. J Bone Joint Surg Am. 1976;58(2):195201. PubMed ID: 1254624 doi:10.2106/00004623-197658020-00006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Inman V, Saunder J, Abbott L. Observations of the function of the shoulder joint. J Bone Joint Surg Am. 1944;26A(1):130.

  • 40.

    Borstad JD, Ludewig PM. The effect of long versus short pectoralis minor resting length on scapular kinematics in healthy individuals. J Orthop Sports Phys Ther. 2005;35(4):227238. PubMed ID: 15901124 doi:10.2519/jospt.2005.35.4.227

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Hebert LJ, Moffet H, McFadyen BJ, Dionne CE. Scapular behavior in shoulder impingement syndrome. Arch Phys Med Rehabil. 2002;83(1):6069. PubMed ID: 11782834

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 443 443 382
Full Text Views 12 12 4
PDF Downloads 6 6 2