A Comparison of Clinical Spinal Mobility Measures to Experimentally Derived Lumbar Spine Passive Stiffness

in Journal of Applied Biomechanics

Click name to view affiliation

Liana M. TennantUniversity of Waterloo

Search for other papers by Liana M. Tennant in
Current site
Google Scholar
PubMed
Close
*
,
Erika Nelson-WongRegis University

Search for other papers by Erika Nelson-Wong in
Current site
Google Scholar
PubMed
Close
*
,
Joshua KuestRegis University

Search for other papers by Joshua Kuest in
Current site
Google Scholar
PubMed
Close
*
,
Gabriel LawrenceRegis University

Search for other papers by Gabriel Lawrence in
Current site
Google Scholar
PubMed
Close
*
,
Kristen LevesqueRegis University

Search for other papers by Kristen Levesque in
Current site
Google Scholar
PubMed
Close
*
,
David OwensRegis University

Search for other papers by David Owens in
Current site
Google Scholar
PubMed
Close
*
,
Jeremy PrisbyRegis University

Search for other papers by Jeremy Prisby in
Current site
Google Scholar
PubMed
Close
*
,
Sarah SpiveyRegis University

Search for other papers by Sarah Spivey in
Current site
Google Scholar
PubMed
Close
*
,
Stephanie R. AlbinRegis University

Search for other papers by Stephanie R. Albin in
Current site
Google Scholar
PubMed
Close
*
,
Kristen JaggerRegis University

Search for other papers by Kristen Jagger in
Current site
Google Scholar
PubMed
Close
*
,
Jeff M. BarrettUniversity of Waterloo

Search for other papers by Jeff M. Barrett in
Current site
Google Scholar
PubMed
Close
*
,
James D. WongColorado School of Mines

Search for other papers by James D. Wong in
Current site
Google Scholar
PubMed
Close
*
, and
Jack P. CallaghanUniversity of Waterloo

Search for other papers by Jack P. Callaghan in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Spinal stiffness and mobility assessments vary between clinical and research settings, potentially hindering the understanding and treatment of low back pain. A total of 71 healthy participants were evaluated using 2 clinical assessments (posteroanterior spring and passive intervertebral motion) and 2 quantitative measures: lumped mechanical stiffness of the lumbar spine and local tissue stiffness (lumbar erector spinae and supraspinous ligament) measured via myotonometry. The authors hypothesized that clinical, mechanical, and local tissue measures would be correlated, that clinical tests would not alter mechanical stiffness, and that males would demonstrate greater lumbar stiffness than females. Clinical, lumped mechanical, and tissue stiffness were not correlated; however, gradings from the posteroanterior spring and passive intervertebral motion tests were positively correlated with each other. Clinical assessments had no effect on lumped mechanical stiffness. The males had greater lumped mechanical and lumbar erector spinae stiffness compared with the females. The lack of correlation between clinical, tissue, and lumped mechanical measures of spinal stiffness indicates that the use of the term “stiffness” by clinicians may require reevaluation; clinicians should be confident that they are not altering mechanical stiffness of the spine through segmental mobility assessments; and greater resting lumbar erector stiffness in males suggests that sex should be considered in the assessment and treatment of the low back.

Tennant, Barrett, and Callaghan are with the Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada. Nelson-Wong, Kuest, Lawrence, Levesque, Owens, Prisby, Spivey, Albin, and Jagger are with the School of Physical Therapy, Regis University, Denver, CO, USA. Wong is with the Department of Mechanical Engineering, Colorado School of Mines, Golden, CO, USA.

Callaghan (jack.callaghan@uwaterloo.ca) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Snodgrass SJ, Haskins R, Rivett DA. A structured review of spinal stiffness as a kinesiological outcome of manipulation: its measurement and utility in diagnosis, prognosis and treatment decision-making. J Electromyogr Kinesiol. 2012;22(5):708723. PubMed ID: 22683056 doi:10.1016/j.jelekin.2012.04.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Flynn T, Fritz J, Whitman J, et al. A clinical prediction rule for classifying patients with low back pain who demonstrate short-term improvement with spinal manipulation. Spine. 2002;27(24):28352843. doi:10.1097/00007632-200212150-00021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Abbott JH, McCane B, Herbison P, Moginie G, Chapple C, Hogarty T. Lumbar segmental instability: a criterion-related validity study of manual therapy assessment. BMC Musculoskelet Disord. 2005;6(1):56. PubMed ID: 16274487 doi:10.1186/1471-2474-6-56

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Fritz JM, Whitman JM, Childs JD. Lumbar spine segmental mobility assessment: an examination of validity for determining intervention strategies in patients with low back pain. Arch Phys Med Rehabil. 2005;86(9):17451752. PubMed ID: 16181937 doi:10.1016/j.apmr.2005.03.028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Brown MB, Holmes DC, Heiner AD, Wehman KF. Intraoperative measurement of lumbar spine motion segment stiffness. Spine. 2002;27(9):954958. PubMed ID: 11979169 doi:10.1097/00007632-200205010-00014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Panjabi MM. The stabilizing system of the spine. Part II. Netural zone and instability hypothesis. J Spinal Disord. 1992;5(4):390397. PubMed ID: 1490035 doi:10.1097/00002517-199212000-00002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Fujiwara A, Lim T-H, An HS, et al. The effect of disc degeneration and facet joint osteoarthritis on the segmental flexbility of the lumbar spine. Spine. 2000;25(23):30363044. PubMed ID: 11145815 doi:10.1097/00007632-200012010-00011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    van Trijffel E, Oostendorp RA, Lindeboom R, Bossuyt PM, Lucas C. Perceptions and use of passive intervertebral motion assessment of the spine: a survey among physiotherapists specializing in manual therapy. Man Ther. 2009;14(3):243251. doi:10.1016/j.math.2008.02.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Latimer J, Lee M, Adams R, Moran CM. An investigation of the relationship between low back pain and lumbar posteroanterior stiffness. J Manipulative Physiol Ther. 1996;19(9):587591. PubMed ID: 8976477

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Brodeur R, DelRe L. Stiffness of the thoracolumbar spine for subjects with and without low back pain. J Neuromusculoskelet Syst. 1999;7(4):127133.

    • Search Google Scholar
    • Export Citation
  • 11.

    Shirley D, Lee M. A preliminary investigation of the relationship between lumbar postero-anterior mobility and low back pain. J Man Manip Ther. 1993;1(1):2225. doi:10.1179/106698193791069807

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Wong AY, Parent EC, Dhillon SS, Prasad N, Kawchuk GN. Do participants with low back pain who respond to spinal manipulative therapy differ biomechanically from nonresponders, untreated controls or asymptomatic controls? Spine. 2015;40(17):13291337. PubMed ID: 26020851 doi:10.1097/BRS.0000000000000981

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Shum GL, Tsung BY, Lee RY. The immediate effect of posteroanterior mobilization on reducing back pain and the stiffness of the lumbar spine. Arch Phys Med Rehabil. 2013;94(4):673679. PubMed ID: 23178541 doi:10.1016/j.apmr.2012.11.020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Wong AYL, Kawchuk GN. The clinical value of assessing lumbar posteroanterior segmental stiffness: a narrative review of manual and instrumented methods. PM R. 2017;9(8):816830. PubMed ID: 27993736 doi:10.1016/j.pmrj.2016.12.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Landel RF, Kulig K, Fredericson M, Li B, Powers CM. Intertester reliability and validity of motion assessments during lumbar spine accessory motion testing. Phys Ther. 2008;88(1):4349. PubMed ID: 18029394 doi:10.2522/ptj.20060179

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Kulig K, Powers CM, Landel RF, et al. Segmental lumbar mobility in individuals with low back pain: in vivo assessment during manual and self-imposed motion using dynamic MRI. BMC Musculoskelet Disord. 2007;8(1):8. PubMed ID: 17261197 doi:10.1186/1471-2474-8-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Maher C, Adams R. Is the clinical concept of spinal stiffness multidimensional. Phys Ther. 1995;75(10):854860. PubMed ID: 7568385 doi:10.1093/ptj/75.10.854

  • 18.

    Love R, Brodeur R. Inter- and intra-examiner reliability of motion palpation for the thoracolumbar spine. J Manipulative Physiol Ther. 1987;10(1):14. PubMed ID: 3559420

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Maitland GD, Hengeveld E, Banks K, English K. Maitland’s Vertebral Manipulation. 7th ed. Philadelphia, PA: Elsevier Butterworth-Heinemann; 2005.

    • Search Google Scholar
    • Export Citation
  • 20.

    Thomas E, Silman AJ, Papageorgiou AC, Macfarlane GJ, Croft PR. Association between measures of spinal mobility and low back pain. Spine. 1998;23(3):343347. PubMed ID: 9507623 doi:10.1097/00007632-199802010-00011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Powers C, Kulig K, Harrison J, Bergman G. Segmental mobility of the lumbar spine during a posterior to anterior mobilization: assessment using dynamic MRI. Clin Biomech. 2003;18(1):8083. doi:10.1016/S0268-0033(02)00174-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    van Trijffel E, Plochg T, van Hartingsveld F, Lucas C, Oostendorp RA. The role and position of passive intervertebral motion assessment within clinical reasoning and decision-making in manual physical therapy: a qualitative interview study. J Man Manip Ther. 2010;18(2):111118. doi:10.1179/106698110X12640740712815

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Koppenhaver SL, Hebert JJ, Kawchuk GN, et al. Criterion validity of manual assessment of spinal stiffness. Man Ther. 2014;19(6):589594. PubMed ID: 24965495 doi:10.1016/j.math.2014.06.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Stolz M, von Piekartz H, Hall T, Schindler A, Ballenberger N. Evidence and recommendations for the use of segmental motion testing for patients with LBP—a systematic review. Musculoskelet Sci Pract. 2020;45:102076. PubMed ID: 31733430 doi:10.1016/j.msksp.2019.102076

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    van Trijffel E, Anderegg Q, Bossuyt PM, Lucas C. Inter-examiner reliability of passive assessment of intervertebral motion in the cervical and lumbar spine: a systematic review. Man Ther. 2005;10(4):256269. doi:10.1016/j.math.2005.04.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Latimer J, Lee M, Adams RD. The effects of high and low loading forces on measured values of lumbar stiffness. J Manipulative Physiol Ther. 1998;21(3):157163. PubMed ID: 9567234

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Brismée JM, Gipson D, Ivie D, et al. Interrater reliability of a passive physiological intervertebral motion test in the mid-thoracic spine. J Manipulative Physiol Ther. 2006;29(5):368373. PubMed ID: 16762664 doi:10.1016/j.jmpt.2006.04.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Inscoe LE, Witt PL, Gross MT, Mitchell RU. Reliability in evaluating passive intervertebral motion of the lumbar spine. J Man Manip Ther. 1995;3(4):135143. doi:10.1179/jmt.1995.3.4.135

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Phillips DR, Twomey LT. A comparison of manual diagnosis with a diagnosis established by a uni-level lumbar spinal block procedure. Man Ther. 1996;1(2):8287. doi:10.1054/math.1996.0254

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Beach TA, Parkinson RJ, Stothart JP, Callaghan JP. Effects of prolonged sitting on the passive flexion stiffness of the in vivo lumbar spine. Spine J. 2005;5(2):145154. PubMed ID: 15749614 doi:10.1016/j.spinee.2004.07.036

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    De Carvalho DE, Callaghan JP. Passive stiffness changes in the lumbar spine and effect of gender during prolonged simulated driving. Int J Ind Ergon. 2011;41(6):617624. doi:10.1016/j.ergon.2011.08.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Brown SH, McGill SM. How the inherent stiffness of the in vivo human trunk varies with changing magnitudes of muscular activation. Clin Biomech. 2008;23(1):1522. doi:10.1016/j.clinbiomech.2007.08.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Gruevski KM, Callaghan JP. The effect of age on in-vivo spine stiffness, postures and discomfort responses during prolonged sitting exposures. Ergonomics. 2019;62(7):917927. PubMed ID: 30889363 doi:10.1080/00140139.2019.1596317

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Parkinson RJ, Beach TA, Callaghan JP. The time-varying response of the in vivo lumbar spine to dynamic repetitive flexion. Clin Biomech (Bristol, Avon). 2004;19(4):330336. doi:10.1016/j.clinbiomech.2004.01.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    McGill SM, Seguin J, Bennett G. Passive stiffness of the lumbar torso in flexion, extension, lateral bending, and axial rotation. Effect of belt wearing and breath holding. Spine. 1994;19(Suppl):696704. PubMed ID: 8009335 doi:10.1097/00007632-199403001-00009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Nordin M, Frankel VH. Basic Biomechanics of the Musculoskeletal System. 3rd ed. Baltimore, MD: Lippincott Williams & Wilkins; 2001.

  • 37.

    Gombatto SP, Norton BJ, Sahrmann SA, Strube MJ, Van Dillen LR. Factors contributing to lumbar region passive tissue characteristics in people with and people without low back pain. Clin Biomech. 2013;28(3):255261. doi:10.1016/j.clinbiomech.2013.01.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Lohr C, Braumann KM, Reer R, Schroeder J, Schmidt T. Reliability of tensiomyography and myotonometry in detecting mechanical and contractile characteristics of the lumbar erector spinae in healthy volunteers. Eur J Appl Physiol. 2018;118(7):13491359. PubMed ID: 29679246 doi:10.1007/s00421-018-3867-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Chuang LL, Wu CY, Lin KC. Reliability, validity, and responsiveness of myotonometric measurement of muscle tone, elasticity, and stiffness in patients with stroke. Arch Phys Med Rehabil. 2012;93(3):532540. PubMed ID: 22222143 doi:10.1016/j.apmr.2011.09.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Nair K, Masi AT, Andonian BJ, et al. Stiffness of resting lumbar myofascia in healthy young subjects quantified using a handheld myotonometer and concurrently with surface electromyography monitoring. J Bodyw Mov Ther. 2016;20(2):388396. PubMed ID: 27210858 doi:10.1016/j.jbmt.2015.12.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Ilahi S, Masi AT, White A, Devos A, Henderson J, Nair K. Quantified biomechanical properties of lower lumbar myofascia in younger adults with chronic idiopathic low back pain and matched healthy controls. Clin Biomech. 2020;73:7885. doi:10.1016/j.clinbiomech.2019.12.026

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Wu Z, Zhu Y, Xu W, Liang J, Guan Y, Xu X. Analysis of biomechanical properties of the lumbar extensor myofascia in elderly patients with chronic low back pain and that in healthy people. Biomed Res Int. 2020;2020:7649157. PubMed ID: 32149135

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Andonian BJ, Masi AT, Aldag JC, et al. Greater resting lumbar extensor myofascial stiffness in younger ankylosing spondylitis patients than age-comparable healthy volunteers quantified by myotonometry. Arch Phys Med Rehabil. 2015;96(11):20412047. PubMed ID: 26254947 doi:10.1016/j.apmr.2015.07.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Myoton®. MyotonPRO User Manual. London UK: Myoton Ltd; 2013.

  • 45.

    Marras WS, Jorgensen MJ, Granata KP, Wiand B. Female and male trunk geometry: size and prediction of the spine loading trunk muscles derived from MRI. Clin Biomech. 2001;16(1):3846. doi:10.1016/S0268-0033(00)00046-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Tracy MF, Gibson MJ, Szypryt EP, Rutherford A, Corlett EN. The geometry of the muscles of the lumbar spine determined by magnetic resonance imaging. Spine. 1989;14(2):186193. PubMed ID: 2922639 doi:10.1097/00007632-198902000-00007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Danneels LA, Vanderstraeten GG, Cambier DC, Witrouw EE, De Cuyper HJ. CT imaging of trunk muscles in chronic low back pain patients and healthy control subjects. Eur Spine J. 2000;9(4):266272. PubMed ID: 11261613 doi:10.1007/s005860000190

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    MacDermid JC, Arumugam V, Vincent JI, Payne KL, So AK. Reliability of three landmarking methods for dual inclinometry measurements of lumbar flexion and extension. BMC Musculoskelet Disord. 2015;16(1):121. PubMed ID: 25989834 doi:10.1186/s12891-015-0578-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Norkin CC, White DJ. Measurement of Joint Motion: A Guide to Goniometry. 5th ed. Philadelphia, PA: F. A. Davis Company; 2016.

  • 50.

    Dankaerts W, O’Sullivan PB, Burnett AF, Straker LM, Danneels LA. Reliability of EMG measurements for trunk muscles during maximal and sub-maximal voluntary isometric contractions in healthy controls and CLBP patients. J Electromyogr Kinesiol. 2004;14(3):333342. PubMed ID: 15094147 doi:10.1016/j.jelekin.2003.07.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    McGill SM, Brown S. Creep response of the lumbar spine to prolonged full flexion. Clin Biomech. 1992;7(1):4346. doi:10.1016/0268-0033(92)90007-Q

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Barrett JM, Fewster KM, Gruevski KM, , Callaghan JP. A novel least-squares method to characterize in-vivo joint functional passive regional stiffness zones. Hum Mov Sci. 2020-316 (Under Review).

    • Search Google Scholar
    • Export Citation
  • 53.

    Shirley D, Ellis E, Lee M. The response of posteroanterior lumbar stiffness to repeated loading. Man Ther. 2002;7(1):1925. PubMed ID: 11884152 doi:10.1054/math.2001.0432

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Gonnella C, Paris SV, Kutner M. Reliability in evaluating passive intervertebral motion. Phys Ther. 1982;62(4):436444. PubMed ID: 7063535 doi:10.1093/ptj/62.4.436

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Agyapong-Badu S, Warner M, Samuel D, Stokes M. Measurement of ageing effects on muscle tone and mechanical properties of rectus femoris and biceps brachii in healthy males and females using a novel hand-held myometric device. Arch Gerontol Geriatr. 2016;62:5967. doi:10.1016/j.archger.2015.09.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Coates B, Barry A, Dougherty J, et al. Quantifying intrinsic properties of resting lumbar muscle in healthy subjects using a handheld myometer. Paper presented at: IEEE 40th Annual Northeast Bioengineering Conference (NEBEC); 2014. Boston, MA.

    • Search Google Scholar
    • Export Citation
  • 57.

    Curtin F, Schulz P. Multiple correlations and Bonferroni’s correction. Biol Psychiatry. 1998;44(8):775777. PubMed ID: 9798082 doi:10.1016/S0006-3223(98)00043-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Nicholson L, Maher C, Adams R. Hand contact area, force applied and early non-linear stiffness (toe) in a manual stiffness discrimination task. Man Ther. 1998;3(4):212219. doi:10.1016/S1356-689X(98)80050-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Pintar FA, Yoganandan N, Myers T, Elhagediab A, Sances A Jr. Biomechanical properties of human lumbar spine ligaments. J Biomech. 1992;25(11):13511356. PubMed ID: 1400536 doi:10.1016/0021-9290(92)90290-H

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Morgan DL. Separation of active and passive components of short-range stiffness of muscle. Am J Physiol. 1977;232(1):C45C49. PubMed ID: 835695 doi:10.1152/ajpcell.1977.232.1.C45

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Heckman CJ, Sandercock TG. From motor unit to whole muscle properties during locomotor movements. Exerc Sport Sci Rev. 1996;24(1):109134.

  • 62.

    van Engelen SJ, Bisschop A, Smit TH, van Royen BJ, van Dieen JH. The effect of neighboring segments on the measurement of segmental stiffness in the intact lumbar spine. Spine J. 2015;15(6):13021309. doi:10.1016/j.spinee.2013.08.020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Zirbel SA, Stolworthy DK, Howell LL, Bowden AE. Intervertebral disc degeneration alters lumbar spine segmental stiffness in all modes of loading under a compressive follower load. Spine J. 2013;13(9):11341147. PubMed ID: 23507531 doi:10.1016/j.spinee.2013.02.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64.

    Panjabi MM, Oxland TR, Yamamoto I, Crisco JJ. Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves. J Bone Joint Surg. 1994;76(3):413424. PubMed ID: 8126047 doi:10.2106/00004623-199403000-00012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Azari F, Arjmand N, Shirazi-Adl A, Rahimi-Moghaddam T. A combined passive and active musculoskeletal model study to estimate L4-L5 load sharing. J Biomech. 2018;70:157165. PubMed ID: 28527584 doi:10.1016/j.jbiomech.2017.04.026

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Abouhossein A, Weisse B, Ferguson SJ. A multibody modelling approach to determine load sharing between passive elements of the lumbar spine. Comput Methods Biomech Biomed Engin. 2011;14(6):527537. PubMed ID: 21128134 doi:10.1080/10255842.2010.485568

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Adams MA, McNally DS, Chinn H, Dolan P. Posture and the compressive strength of the lumbar spine. Clin Biomech. 1994;9(1):514. doi:10.1016/0268-0033(94)90052-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68.

    Gennisson JL, Deffieux T, Mace E, Montaldo G, Fink M, Tanter M. Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound Med Biol. 2010;36(5):789801. PubMed ID: 20420970 doi:10.1016/j.ultrasmedbio.2010.02.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Viidik A. Functional properties of collagenous tissues. Int Rev Connect Tissue Res. 1973;6:127215. PubMed ID: 4593853

  • 70.

    Robertson D, Willardson R, Parajuli D, Cannon A, Bowden AE. The lumbar supraspinous ligament demonstrates increased material stiffness and strength on its ventral aspect. J Mech Behav Biomed Mater. 2013;17:3443. PubMed ID: 23131792 doi:10.1016/j.jmbbm.2012.07.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Lee R, Evans J. Load-displacement-time characteristics of the spine under posteroanterior mobilisation. Aust J Physiother. 1992;38(2):115123. PubMed ID: 25025643 doi:10.1016/S0004-9514(14)60556-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Langevin HM, Fox JR, Koptiuch C, et al. Reduced thoracolumbar fascia shear strain in human chronic low back pain. BMC Musculoskelet Disord. 2011;12(1):203. PubMed ID: 21929806 doi:10.1186/1471-2474-12-203

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    White A, Abbott H, Masi AT, Henderson J, Nair K. Biomechanical properties of low back myofascial tissue in younger adult ankylosing spondylitis patients and matched healthy control subjects. Clin Biomech. 2018;57:6773. doi:10.1016/j.clinbiomech.2018.06.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 74.

    Owens EF Jr, DeVocht JW, Gudavalli MR, Wilder DG, Meeker WC. Comparison of posteroanterior spinal stiffness measures to clinical and demographic findings at baseline in patients enrolled in a clinical study of spinal manipulation for low back pain. J Manipulative Physiol Ther. 2007;30(7):493500. PubMed ID: 17870417 doi:10.1016/j.jmpt.2007.07.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    Pagé I, Swain M, Wong A, et al. Correlations between individuals’ characteristics and spinal stiffness in individuals with and without back pain: a combined analysis of multiple data sets. J Manipulative Physiol Ther. 2018;41(9):734752. PubMed ID: 30871711 doi:10.1016/j.jmpt.2018.04.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76.

    Albin SR, Koppenhaver SL, Bailey B, et al. The effect of manual therapy on gastrocnemius muscle stiffness in healthy individuals. Foot. 2019;38:7075. doi:10.1016/j.foot.2019.01.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 77.

    Ribaud A, Tavares I, Viollet E, Julia M, Herisson C, Dupeyron A. Which physical activities and sports can be recommended to chronic low back pain patients after rehabilitation? Ann Phys Rehabil Med. 2013;56(7–8):576594. PubMed ID: 24140440 doi:10.1016/j.rehab.2013.08.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    van der Hulst M, Vollenbroek-Hutten MM, Rietman JS, Hermens HJ. Lumbar and abdominal muscle activity during walking in subjects with chronic low back pain: support of the “guarding” hypothesis? J Electromyogr Kinesiol. 2010;20(1):3138. doi:10.1016/j.jelekin.2009.03.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 79.

    Norton G, McDonough CM, Cabral HJ, Shwartz M, Burgess JF Jr. Classification of patients with incident non-specific low back pain: implications for research. Spine J. 2016;16(5):567576. PubMed ID: 26282103 doi:10.1016/j.spinee.2015.08.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80.

    Kawchuk GN, Miazga S, Page I, et al. Clinicians’ ability to detect a palpable difference in spinal stiffness compared with a mechanical device. J Manipulative Physiol Ther. 2019;42(2):8995. PubMed ID: 31000343 doi:10.1016/j.jmpt.2019.02.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2430 993 9
Full Text Views 450 11 0
PDF Downloads 256 15 0