Breast cancer survivors have known scapular kinematic alterations that may be related to the development of secondary morbidities. A measure of muscle activation would help understand the mechanisms behind potential harmful kinematics. The purpose of this study was to define muscle force strategies in breast cancer survivors. Shoulder muscle forces during 6 functional tasks were predicted for 25 breast cancer survivors (divided by impingement pain) and 25 controls using a modified Shoulder Loading Analysis Module. Maximum forces for each muscle were calculated, and 1-way analysis of variance (P < .05) was used to identify group differences. The differences between maximum predicted forces and maximum electromyography were compared with repeated-measures analysis of variance (P < .05) to evaluate the success of the model predictions. Average differences between force predictions and electromyography ranged from 7.3% to 31.6% but were within the range of previously accepted differences. Impingement related pain in breast cancer survivors is associated with increased force of select shoulder muscles. Both pectoralis major heads, upper trapezius, and supraspinatus peak forces were higher in the pain group across all tasks. These force prediction differences are also associated with potentially harmful kinematic strategies, providing a direction for possible rehabilitation strategies.