Lower-Extremity Motor Synergies in Individuals With and Without Chronic Ankle Instability

in Journal of Applied Biomechanics

Click name to view affiliation

Adam E. JagodinskyIllinois State University

Search for other papers by Adam E. Jagodinsky in
Current site
Google Scholar
PubMed
Close
*
,
Rebecca AnglesMedical University of South Carolina

Search for other papers by Rebecca Angles in
Current site
Google Scholar
PubMed
Close
*
,
Christopher WilburnAuburn University

Search for other papers by Christopher Wilburn in
Current site
Google Scholar
PubMed
Close
*
, and
Wendi H. WeimarAuburn University

Search for other papers by Wendi H. Weimar in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Current theoretical models suggest that ankle sprain copers exhibit movement adaptations contributing to the avoidance of chronic ankle instability. However, few studies have examined adaptations at the level of biomechanical motor synergies. The purpose was to examine characteristics of the support moment synergy between individuals with chronic ankle instability, copers, and healthy individuals. A total of 48 individuals participated in the study. Lower-extremity kinetics and variability in the moment of force patterns were assessed during the stance phase of walking trials. The copers exhibited reductions in the support moment during the load response and preswing phase compared with the chronic ankle instability group, as well as during the terminal stance and preswing phase compared the healthy group. The copers also exhibited reductions in the hip extensor moment and ankle plantarflexion moment compared with healthy and chronic ankle instability groups during intervals of stance phase. Variability of the support moment and knee moment was greater in the copers compared with the chronic ankle instability group. Dampening of the support moment and select joint moments exhibited by the copers may indicate an adaptive mechanism to mitigate loading perturbations on the previously injured ankle. Heightened motor variability in copers may be indicative of a more adaptable motor synergy compared with individuals with chronic ankle instability.

Jagodinsky is with the School of Kinesiology and Recreation, Illinois State University, Normal, IL, USA. Angles is with the Physical Therapy Program, Medical University of South Carolina, Charleston, SC, USA. Wilburn and Weimar are with the School of Kinesiology, Auburn University, Auburn, AL, USA.

Jagodinsky (aejagod@ilstu.edu) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Doherty C, Delahunt E, Caulfield B, Hertel J, Ryan J, Bleakley C. The incidence and prevalence of ankle sprain injury: a systematic review and meta-analysis of prospective epidemiological studies. Sports Med. 2014;44(1):123140. PubMed ID: 24105612 doi:10.1007/s40279-013-0102-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Fong DTP, Hong Y, Chan LK, Yung PSH, Chan KM. A systematic review on ankle injury and ankle sprain in sports. Sports Med. 2007;37(1):7394. PubMed ID: 17190537 doi:10.2165/00007256-200737010-00006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Hershkovich O, Tenenbaum S, Gordon B, et al. A large-scale study on epidemiology and risk factors for chronic ankle instability in young adults. J Foot Ankle Surg. 2015;54(2):183187. PubMed ID: 25135102 doi:10.1053/j.jfas.2014.06.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Freeman MAR. Instability of the foot after injuries to the lateral ligament of the ankle. J Bone Joint Surg Br. 1965;47(4):669677. PubMed ID: 5846766 doi:10.1302/0301-620X.47B4.669

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Hertel J. Functional anatomy, pathomechanics, and pathophysiology of lateral ankle instability. J Athl Train. 2002;37(4):364375. PubMed ID: 12937557

  • 6.

    HIller CE, Kilbreath SL, Refshauge KM. Chronic ankle instability: evolution of the model. J Athl Train. 2011;46(2):133141. PubMed ID: 21391798 doi:10.4085/1062-6050-46.2.133

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Wikstrom EA, Hubbard-Turner T, McKeon PO. Understanding and treating lateral ankle sprains and their consequences: a constraints-based approach. Sports Med. 2013;43(6):385393. PubMed ID: 23580392 doi:10.1007/s40279-013-0043-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Hertel J. Sensorimotor deficits with ankle sprains and chronic ankle instability. Clin Sports Med. 2008;27(3):353370. PubMed ID: 18503872 doi:10.1016/j.csm.2008.03.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Wikstrom EA, Brown CN. Minimum reporting standards for copers in chronic ankle instability research. Sports Med. 2014;44(2):251268. PubMed ID: 24122774 doi:10.1007/s40279-013-0111-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Delahunt E, Monaghan K, Caulfield B. Altered neuromuscular control and ankle joint kinematics during walking in subjects with functional instability of the ankle joint. Am J Sports Med. 2006;34(12):19701976. PubMed ID: 16926342 doi:10.1177/0363546506290989

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Hass CJ, Bishop MD, Doidge D, Wikstrom EA. Chronic ankle instability alters central organization of movement. Am J Sports Med. 2010;38(4):829834. PubMed ID: 20139327 doi:10.1177/0363546509351562

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Hubbard TJ, Kramer LC, Denegar CR, Hertel J. Contributing factors to chronic ankle instability. Foot Ankle Int. 2007;28(3):343354. PubMed ID: 17371658 doi:10.3113/FAI.2007.0343

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    McLeod MM, Gribble PA, Pietrosimone BG. Chronic ankle instability and neural excitability of the lower extremity. J Athl Train. 2015;50(8):847853. PubMed ID: 26090710 doi:10.4085/1062-6050-50.4.06

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    McVey ED, Palmieri RM, Docherty CL, Zinder SM, Ingersoll CD. Arthrogenic muscle inhibition in the leg muscles of subjects exhibiting functional ankle instability. Foot Ankle Int. 2005;26(12):10551061. PubMed ID: 16390639 doi:10.1177/107110070502601210

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Needle AR, Lepley AS, Grooms DR. Central nervous system adaptation after ligamentous injury: a summary of theories, evidence, and clinical interpretation. Sports Med. 2017;47(7):12711288. PubMed ID: 28005191 doi:10.1007/s40279-016-0666-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Wikstrom EA, Tillman MD, Chmielewski TL, Cauraugh JH, Naugle KE, Borsa PA. Discriminating between copers and people with chronic ankle instability. J Athl Train. 2012;47(2):136142. PubMed ID: 22488278 doi:10.4085/1062-6050-47.2.136

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Doherty C, Bleakley C, Hertel J, Caulfield B, Ryan J, Delahunt E. Gait biomechanics in participants, six months after first-time lateral ankle sprain. Int J Sports Med. 2016;37(7):577583. PubMed ID: 27136507 doi:10.1055/s-0035-1564172

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Doherty C, Bleakley C, Hertel J, Caulfield B, Ryan J, Delahunt E. Locomotive biomechanics in persons with chronic ankle instability and lateral ankle sprain copers. J Sci Med Sport. 2016;19(7):524530. PubMed ID: 26296816 doi:10.1016/j.jsams.2015.07.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Doherty C, Bleakley C, Hertel J, Caulfield B, Ryan J, Delahunt E. Single-leg drop landing movement strategies in participants with chronic ankle instability compared with lateral ankle sprain ‘copers’. Knee Surg Sports Traumatol Arthrosc. 2016;24(4):10491059. PubMed ID: 26572632 doi:10.1007/s00167-015-3852-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Monaghan K, Delahunt E, Caulfield B. Ankle function during gait in patients with chronic ankle instability compared to controls. Clinical Biomech. 2006;21(2):168174. PubMed ID: 16269208 doi:10.1016/j.clinbiomech.2005.09.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Wikstrom EA, Hass CJ. Gait termination strategies differ between those with and without ankle instability. Clin Biomech. 2012;27(6):619624. PubMed ID: 22285191 doi:10.1016/j.clinbiomech.2012.01.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Winter DA. Overall principle of lower limb support during stance phase of gait. J Biomech. 1980;13(11):923927. PubMed ID: 7275999 doi:10.1016/0021-9290(80)90162-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Winter DA. Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological. 2nd ed. Waterloo, ON: Waterloo Biomechanics; 1991.

    • Search Google Scholar
    • Export Citation
  • 24.

    Fuller EA. Center of pressure and its theoretical relationship to foot pathology. J Am Podiatr Med Assoc. 1999;89(6):278291. PubMed ID: 10384754 doi:10.7547/87507315-89-6-278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Wright IC, Neptune RR, van den Bogert AJ, Nigg BM. The influence of foot positioning on ankle sprains. J Biomech. 2000;33(5):513519. PubMed ID: 10708771 doi:10.1016/S0021-9290(99)00218-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Winter DA. Kinematic and kinetic patterns in human gait: variability and compensating effects. Hum Mov Sci. 1984;3(1):5176. doi:10.1016/0167-9457(84)90005-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Toney ME, Chang YH. The motor and the brake of the trailing leg in human walking: leg force control through ankle modulation and knee covariance. Exp Brain Res. 2016;234(10):30113023. PubMed ID: 27334888 doi:10.1007/s00221-016-4703-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Gribble PA, Delahunt E, Bleakley C, et al. Selection criteria for patients with chronic ankle instability in controlled research: a position statement of the International Ankle Consortium. J Orthop Sports Phys Ther. 2013;43(8):585591. PubMed ID: 23902805 doi:10.2519/jospt.2013.0303

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Martin RL, Irrgang JJ, Burdett RG, Conti SF, Van Swearingen JM. Evidence of validity for the Foot and Ankle Ability Measure (FAAM). Foot Ankle Int. 2005;26(11):968983. PubMed ID: 16309613 doi:10.1177/107110070502601113

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Docherty CL, Gansneder BM, Arnold BL, Hurwitz SR. Development and reliability of the ankle instability instrument. J Athl Train. 2006;41(2):154158. PubMed ID: 16791299

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Sadeghi H, Allard P, Prince F, Labelle H. Symmetry and limb dominance in able-bodied gait: a review. Gait Posture. 2000;12(1):3445. PubMed ID: 10996295 doi:10.1016/S0966-6362(00)00070-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Kim H, Son SJ, Seeley MK, Hopkins JT. Kinetic compensations due to chronic ankle instability during landing and jumping. Med Sci Sports Exerc. 2018;50(2):308317. PubMed ID: 28991043 doi:10.1249/MSS.0000000000001442

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Herb CC, Grossman K, Feger MA, Donovan L, Hertel J. Lower extremity biomechanics during a drop-vertical jump in participants with or without chronic ankle instability. J Athl Train. 2018;53(4):364371. PubMed ID: 29667844 doi:10.4085/1062-6050-481-15

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Drewes LK, McKeon PO, Paolini G, et al. Altered ankle kinematics and shank-rear-foot coupling in those with chronic ankle instability. J Sport Rehabil. 2009;18(3):375388. PubMed ID: 19827501 doi:10.1123/jsr.18.3.375

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Latash ML, Scholz JP, Schöner G. Motor control strategies revealed in the structure of motor variability. Exerc Sport Sci Rev. 2002;30(1):2631. PubMed ID: 11800496 doi:10.1097/00003677-200201000-00006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Van Emmerik REA, Hamill J, McDermott WJ. Variability and coordinative function in human gait. Quest. 2005;57(1):102123. doi:10.1080/00336297.2005.10491845

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Hoch MC, McKeon PO. Integrating contemporary models of motor control and health in chronic ankle instability. Athl Train Sports Health Care. 2010;2(2):8288. doi:10.3928/19425864-20100226-08

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2234 879 102
Full Text Views 87 28 2
PDF Downloads 102 38 0