Lumbar Intervertebral Kinematics During an Unstable Sitting Task and Its Association With Standing-Induced Low Back Pain

in Journal of Applied Biomechanics

Click name to view affiliation

Daniel ViggianiUniversity of Waterloo

Search for other papers by Daniel Viggiani in
Current site
Google Scholar
PubMed
Close
*
,
Erin M. MannenUniversity of Denver
University of Arkansas for Medical Sciences

Search for other papers by Erin M. Mannen in
Current site
Google Scholar
PubMed
Close
*
,
Erika Nelson-WongRegis University

Search for other papers by Erika Nelson-Wong in
Current site
Google Scholar
PubMed
Close
*
,
Alexander WongUniversity of Waterloo

Search for other papers by Alexander Wong in
Current site
Google Scholar
PubMed
Close
*
,
Gary GhiselliUniversity of Denver

Search for other papers by Gary Ghiselli in
Current site
Google Scholar
PubMed
Close
*
,
Kevin B. ShelburneUniversity of Denver

Search for other papers by Kevin B. Shelburne in
Current site
Google Scholar
PubMed
Close
*
,
Bradley S. DavidsonUniversity of Denver

Search for other papers by Bradley S. Davidson in
Current site
Google Scholar
PubMed
Close
*
, and
Jack P. CallaghanUniversity of Waterloo

Search for other papers by Jack P. Callaghan in
Current site
Google Scholar
PubMed
Close
*
Restricted access

People developing transient low back pain during standing have altered control of their spine and hips during standing tasks, but the transfer of these responses to other tasks has not been assessed. This study used video fluoroscopy to assess lumbar spine intervertebral kinematics of people who do and do not develop standing-induced low back pain during a seated chair-tilting task. A total of 9 females and 8 males were categorized as pain developers (5 females and 3 males) or nonpain developers (4 females and 5 males) using a 2-hour standing exposure; pain developers reported transient low back pain and nonpain developers did not. Participants were imaged with sagittal plane fluoroscopy at 25 Hz while cyclically tilting their pelvises anteriorly and posteriorly on an unstable chair. Intervertebral angles, relative contributions, and anterior–posterior translations were measured for the L3/L4, L4/L5, and L5/S1 joints and compared between sexes, pain groups, joints, and tilting directions. Female pain developers experienced more extension in their L5/S1 joints in both tilting directions compared with female nonpain developers, a finding not present in males. The specificity in intervertebral kinematics to sex-pain group combinations suggests that these subgroups of pain developers and nonpain developers may implement different control strategies.

Viggiani and Callaghan are with the Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada. Mannen, Ghiselli, Shelburne, and Davidson are with the Department of Materials and Mechanical Engineering, University of Denver, Denver, CO, USA. Mannen is also with the Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA. Nelson-Wong is with the School of Physical Therapy, Regis University, Denver, CO, USA. Wong is with Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada.

Callaghan (callagha@uwaterloo.ca) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Breen AC, Breen A. Uneven intervertebral motion sharing is related to disc degeneration and is greater in patients with chronic, non-specific low back pain: an in vivo, cross-sectional cohort comparison of intervertebral dynamics using quantitative fluoroscopy. Eur Spine J. 2018;27(1):145153. PubMed ID: 28555313 doi:10.1007/s00586-017-5155-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Viggiani D, Gallagher KM, Sehl M, Callaghan JP. The distribution of lumbar intervertebral angles in upright standing and extension is related to low back pain developed during standing. Clin Biomech. 2017;49:8590. PubMed ID: 28898814 doi:10.1016/j.clinbiomech.2017.09.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Breen A, Breen A. Dynamic interactions between lumbar intervertebral motion segments during forward bending and return. J Biomech. 2020;102:109603. PubMed ID: 31964520 doi:10.1016/j.jbiomech.2020.109603

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Basques BA, Espinoza Orías AA, Shifflett GD, et al. The kinematics and spondylosis of the lumbar spine vary depending on the levels of motion segments in individuals with low back pain. Spine. 2017;42(13):E767E774. PubMed ID: 27831966 doi:10.1097/BRS.0000000000001967

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Nelson-Wong E, Callaghan JP. Changes in muscle activation patterns and subjective low back pain ratings during prolonged standing in response to an exercise intervention. J Electromyogr Kinesiol. 2010;20(6):11251133. PubMed ID: 20674390 doi:10.1016/j.jelekin.2010.07.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Nelson-Wong E, Gregory DE, Winter DA, Callaghan JP. Gluteus medius muscle activation patterns as a predictor of low back pain during standing. Clin Biomech. 2008;23(5):545553. PubMed ID: 18282648 doi:10.1016/j.clinbiomech.2008.01.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Butowicz CM, Acasio JC, Silfies SP, Nussbaum MA, Hendershot BD. Chronic low back pain influences trunk neuromuscular control during unstable sitting among persons with lower-limb loss. Gait Posture. 2019;74:236241. PubMed ID: 31563825 doi:10.1016/j.gaitpost.2019.09.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Cholewicki J, Polzhofer GK, Radebold A. Postural control of trunk during unstable sitting. J Biomech. 2000;33(12):17331737. PubMed ID: 11006402 doi:10.1016/S0021-9290(00)00126-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    van Dieën JH, Selen LPJ, Cholewicki J. Trunk muscle activation in low-back pain patients, an analysis of the literature. J Electromyogr Kinesiol. 2003;13(4):333351. PubMed ID: 12832164 doi:10.1016/S1050-6411(03)00041-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    McGill SM, Grenier SG, Kavcic N, Cholewicki J. Coordination of muscle activity to assure stability of the lumbar spine. J Electromyogr Kinesiol. 2003;13(4):353359. PubMed ID: 12832165 doi:10.1016/S1050-6411(03)00043-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Silfies SP, Cholewicki J, Radebold A. The effects of visual input on postural control of the lumbar spine in unstable sitting. Hum Mov Sci. 2003;22(3):237252. PubMed ID: 12967756 doi:10.1016/S0167-9457(03)00046-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Roberts BWR, Vette AH. A kinematics recommendation for trunk stability and control assessments during unstable sitting. Med Eng Phys. 2019;73:7376. PubMed ID: 31495723 doi:10.1016/j.medengphy.2019.08.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Radebold A, Cholewicki J, Polzhofer GK, Greene HS. Impaired postural control of the lumbar spine is associated with delayed muscle response times in patients with chronic idiopathic low back pain. Spine. 2001;26(7):724730. PubMed ID: 11295888 doi:10.1097/00007632-200104010-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Van Dieën JH, Koppes LLJ, Twisk JWR. Low back pain history and postural sway in unstable sitting. Spine. 2010;35(7):812817. PubMed ID: 20195213 doi:10.1097/BRS.0b013e3181bb81a8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Preuss RA, Grenier SG, McGill SM. Postural control of the lumbar spine in unstable sitting. Arch Phys Med Rehabil. 2005;86(12):23092315. PubMed ID: 16344028 doi:10.1016/j.apmr.2005.07.302

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Freddolini M, Strike S, Lee RY. Dynamic stability of the trunk during unstable sitting in people with low back pain. Spine. 2014;39(10):785790. PubMed ID: 24583732 doi:10.1097/BRS.0000000000000296

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Lariviere C, Gagnon DH, Mecheri H. Trunk postural control in unstable sitting: effect of sex and low back pain status. Clin Biomech. 2015;30(9):933939. PubMed ID: 26253690 doi:10.1016/j.clinbiomech.2015.07.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Albertsen IM, Temprado JJ, Berton E, Heuer H. Effect of haptic supplementation on postural control of younger and older adults in an unstable sitting task. J Electromyogr Kinesiol. 2014;24(4):572578. PubMed ID: 24788025 doi:10.1016/j.jelekin.2014.03.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Rausch Osthoff A-K, Ernst MJ, Rast FM, et al. Measuring lumbar reposition accuracy in patients with unspecific low back pain. Spine. 2015;40(2):E97E111. PubMed ID: 25575094 doi:10.1097/BRS.0000000000000677

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    O’Sullivan K, Verschueren S, Van Hoof W, Ertanir F, Martens L, Dankaerts W. Lumbar repositioning error in sitting: healthy controls versus people with sitting-related non-specific chronic low back pain (flexion pattern). Man Ther. 2013;18(6):526532. PubMed ID: 23756034 doi:10.1016/j.math.2013.05.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Stokes IAF, Fox JR, Henry SM. Trunk muscular activation patterns and responses to transient force perturbation in persons with self-reported low back pain. Eur Spine J. 2006;15(5):658667. PubMed ID: 15906102 doi:10.1007/s00586-005-0893-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Sorensen CJ, Johnson MB, Callaghan JP, George SZ, Van Dillen LR. Validity of a paradigm for low back pain symptom development during prolonged standing. Clin J Pain. 2015;31(7):652659. PubMed ID: 25171636 doi:10.1097/AJP.0000000000000148

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Nelson-Wong E, Callaghan JP. Is muscle co-activation a predisposing factor for low back pain development during standing? A multifactorial approach for early identification of at-risk individuals. J Electromyogr Kinesiol. 2010;20(2):256263. PubMed ID: 19467607 doi:10.1016/j.jelekin.2009.04.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Gregory DE, Brown SHM, Callaghan JP. Trunk muscle responses to suddenly applied loads: do individuals who develop discomfort during prolonged standing respond differently? J Electromyogr Kinesiol. 2008;18(3):495502. PubMed ID: 17270465 doi:10.1016/j.jelekin.2006.12.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Stewart DM, Gregory DE. The use of intermittent trunk flexion to alleviate low back pain during prolonged standing. J Electromyogr Kinesiol. 2016;27:4651. PubMed ID: 26897327 doi:10.1016/j.jelekin.2016.01.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Nelson-Wong E, Alex B, Csepe D, Lancaster D, Callaghan JP. Altered muscle recruitment during extension from trunk flexion in low back pain developers. Clin Biomech. 2012;27(10):994998. PubMed ID: 22877831 doi:10.1016/j.clinbiomech.2012.07.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Sorensen CJ, Norton BJ, Callaghan JP, Hwang C-T, Van Dillen LR. Is lumbar lordosis related to low back pain development during prolonged standing? Man Ther. 2015;20(4):553557. PubMed ID: 25637464 doi:10.1016/j.math.2015.01.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Gallagher KM, Campbell T, Callaghan JP. The influence of a seated break on prolonged standing induced low back pain development. Ergonomics. 2014;57(4):555562. PubMed ID: 24734970 doi:10.1080/00140139.2014.893027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Gallagher KM, Callaghan JP. Early static standing is associated with prolonged standing induced low back pain. Hum Mov Sci. 2015;44:111121. PubMed ID: 26340276 doi:10.1016/j.humov.2015.08.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Viggiani D, Callaghan JP. A hip abduction exercise prior to prolonged standing increased movement while reducing cocontraction and low back pain perception in those initially reporting low back pain. J Electromyogr Kinesiol. 2016;31:6371. PubMed ID: 27693989 doi:10.1016/j.jelekin.2016.09.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Nelson-Wong E, Callaghan JP. Repeatability of clinical, biomechanical, and motor control profiles in people with and without standing-induced low back pain. Rehabil Res Pract. 2010;2010:289278. PubMed ID: 22110964 doi:10.1155/2010/289278

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Nelson-Wong E, Callaghan JP. Transient low back pain development during standing predicts future clinical low back pain in previously asymptomatic individuals. Spine. 2014;39(6):E379E383. PubMed ID: 24384659 doi:10.1097/BRS.0000000000000191

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Byrne RM, Aiyangar AK, Zhang X. A dynamic radiographic imaging study of lumbar intervertebral disc morphometry and deformation in vivo. Sci Rep. 2019;9(1):112. PubMed ID: 31664074 doi:10.1038/s41598-019-51871-w

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Mellor FE, Thomas PW, Thompson P, Breen AC. Proportional lumbar spine inter-vertebral motion patterns: a comparison of patients with chronic, non-specific low back pain and healthy controls. Eur Spine J. 2014;23(10):20592067. PubMed ID: 24676852 doi:10.1007/s00586-014-3273-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Gallagher KM, Nelson-Wong E, Callaghan JP. Do individuals who develop transient low back pain exhibit different postural changes than non-pain developers during prolonged standing? Gait Posture. 2011;34(4):490495. PubMed ID: 21802955 doi:10.1016/j.gaitpost.2011.06.025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Gallagher KM, Sehl M, Callaghan JP. A radiographic assessment of lumbar spine posture in four different upright standing positions. Clin Biomech. 2016;37:131136. PubMed ID: 27447825 doi:10.1016/j.clinbiomech.2016.07.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Okawa A, Shinomiya K, Komori H, Muneta T, Arai Y, Nakai O. Dynamic motion study of the whole lumbar spine by videofluoroscopy. Spine. 1998;23(16):17431749. PubMed ID: 9728375 doi:10.1097/00007632-199808150-00007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    du Rose A, Breen AC. Relationships between lumbar inter-vertebral motion and lordosis in healthy adult males: a cross sectional cohort study. BioMed Cent Musculoskelet Disord. 2016;17:121. PubMed ID: 26964535 doi:10.1186/s12891-016-0975-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Harvey S, Hukins D, Smith F, Wardlaw D, Kader D. Measurement of lumbar spine intervertebral motion in the sagittal plane using videofluoroscopy. J Back Musculoskelet Rehabil. 2016;29(3):445457. PubMed ID: 26444329 doi:10.3233/BMR-150639

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Teyhen DS, Flynn TW, Childs JD, Abraham LD. Arthrokinematics in a subgroup of patients likely to benefit from a lumbar stabilization exercise program. Phys Ther. 2007;87(3):313325. PubMed ID: 17311885 doi:10.2522/ptj.20060253

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Kanemura A, Doita M, Kasahara K, Sumi M, Kurosaka M, Iguchi T. The influence of sagittal instability factors on clinical lumbar spinal symptoms. J Spinal Disord Tech. 2009;22(7):479485. PubMed ID: 20075810 doi:10.1097/BSD.0b013e31818d1b18

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Dunk NM, Kedgley AE, Jenkyn TR, Callaghan JP. Evidence of a pelvis-driven flexion pattern: are the joints of the lower lumbar spine fully flexed in seated postures? Clin Biomech. 2009;24(2):164168. PubMed ID: 19138810 doi:10.1016/j.clinbiomech.2008.12.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Dankaerts W, O’Sullivan PB, Burnett AF, Straker LM. Differences in sitting postures are associated with nonspecific chronic low back pain disorders when patients are subclassified. Spine. 2006;31(6):698704. PubMed ID: 16540876 doi:10.1097/01.brs.0000202532.76925.d2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Chowdhury SK, Byrne RM, Zhou Y, Zhang X. Lumbar facet joint kinematics and load effects during dynamic lifting. Hum Factors. 2018;60(8):11301145. PubMed ID: 30074402 doi:10.1177/0018720818790719

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Ivester JC, Cyr AJ, Harris MD, Kulis MJ, Rullkoetter PJ, Shelburne KB. A reconfigurable high-speed stereo-radiography system for sub-millimeter measurement of in vivo joint kinematics. J Med Device. 2015;9(4):41009. doi:10.1115/1.4030778

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Dvorˇák J, Vajda EG, Grob D, Panjabi MM. Normal motion of the lumbar spine as related to age and gender. Eur Spine J. 1995;4(1):1823. PubMed ID: 7749901 doi:10.1007/BF00298413

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Breen A, Breen AC. Accuracy and repeatability of quantitative fluoroscopy for the measurement of sagittal plane translation and finite centre of rotation in the lumbar spine. Med Eng Phys. 2016;38(7):607614. PubMed ID: 27129784 doi:10.1016/j.medengphy.2016.03.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Muggleton JM, Allen R. Insights into the measurement of vertebral translation in the sagittal plane. Med Eng Phys. 1998;20(1):2132. PubMed ID: 9664282 doi:10.1016/S1350-4533(97)00045-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Gatton ML, Pearcy MJ. Kinematics and movement sequencing during flexion of the lumbar spine. Clin Biomech. 1999;14(6):376383. PubMed ID: 10521618 doi:10.1016/S0268-0033(98)00109-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Zhou SH, McCarthy ID, McGregor AH, Coombs RRH, Hughes SPF. Geometrical dimensions of the lower lumbar vertebrae – analysis of data from digitised CT images. Eur Spine J. 2000;9(3):242248. PubMed ID: 10905444 doi:10.1007/s005860000140

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Breen A, Hemming R, Mellor F, Breen A. Intrasubject repeatability of in vivo intervertebral motion parameters using quantitative fluoroscopy. Eur Spine J. 2019;28(2):450460. PubMed ID: 30535658 doi:10.1007/s00586-018-5849-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Iguchi T, Kanemura A, Kasahara K, et al. Lumbar instability and clinical symptoms: which is the more critical factor for symptoms: sagittal translation or segment angulation? J Spinal Disord Tech. 2004;17(4):284290 PubMed ID: 15280756 doi:10.1097/01.bsd.0000102473.95064.9d

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Lao L, Daubs MD, Scott TP, et al. Effect of disc degeneration on lumbar segmental mobility analyzed by kinetic magnetic resonance imaging. Spine. 2015;40(5):316322. PubMed ID: 25494318 doi:10.1097/BRS.0000000000000738

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2270 819 100
Full Text Views 76 15 2
PDF Downloads 75 15 1