Analysis of the Relative Motion Between the Socket and Residual Limb in Transtibial Amputees While Wearing a Transverse Rotation Adapter

in Journal of Applied Biomechanics
View More View Less
  • 1 Montana State University
  • 2 The University of Texas at Austin
  • 3 University of Washington
  • 4 Center for Limb Loss and Mobility
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

The coupling between the residual limb and the lower-limb prosthesis is not rigid. As a result, external loading produces movement between the prosthesis and residual limb that can lead to undesirable soft-tissue shear stresses. As these stresses are difficult to measure, limb loading is commonly used as a surrogate. However, the relationship between limb loading and the displacements responsible for those stresses remains unknown. To better understand the limb motion within the socket, an inverse kinematic analysis was performed to estimate the motion between the socket and tibia for 10 individuals with a transtibial amputation performing walking and turning activities at 3 different speeds. The authors estimated the rotational stiffness of the limb-socket body to quantify the limb properties when coupled with the socket and highlight how this approach could help inform prosthetic prescriptions. Results showed that peak transverse displacement had a significant, linear relationship with peak transverse loading. Stiffness of the limb-socket body varied significantly between individuals, activities (walking and turning), and speeds. These results suggest that transverse limb loading can serve as a surrogate for residual-limb shear stress and that the setup of a prosthesis could be individually tailored using standard motion capture and inverse kinematic analyses.

Pew is with the Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT, USA. Roelker and Neptune are with the Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA. Klute is with the Department of Mechanical Engineering, University of Washington, Seattle, WA, USA; and the Department of Veterans Affairs, Center for Limb Loss and Mobility, Seattle, WA, USA.

Pew (Corey.Pew@montana.edu) is corresponding author.
  • 1.

    Sanders JE, Daly CH, Burgess EM. Interface shear stresses during ambulation with a below-knee prosthetic limb. J Rehabil Res Dev. 1992;29(4):18. PubMed ID: 1432723 doi:10.1682/JRRD.1992.10.0001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Portnoy S, Yizhar Z, Shabshin N, et al. Internal mechanical conditions in the soft tissues of a residual limb of a trans-tibial amputee. J Biomech. 2008;41(9):18971909. PubMed ID: 18495134 doi:10.1016/j.jbiomech.2008.03.035

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Twiste M, Rithalia S. Transverse rotation and longitudinal translation during prosthetic gait–a literature review. J Rehabil Res Dev. 2003;40(1):918. PubMed ID: 15150716 doi:10.1682/JRRD.2003.01.0009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Flick KC, Orendurff MS, Berge JS, Segal AD, Klute GK. Comparison of human turning gait with the mechanical performance of lower limb prosthetic transverse rotation adapters. Prosthet Orthot Int. 2005;29(1):7381. PubMed ID: 16180379 doi:10.1080/03093640500088120

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Lamoureux LW, Radcliffe CW. Functional analysis of the UC-BL shank axial rotation device. Prosthet Orthot Int. 1977;1(2):114118. PubMed ID: 615294 doi:10.3109/03093647709164619

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Heitzmann DWW, Pieschel K, Alimusaj M, Block J, Putz C, Wolf SI. Functional effects of a prosthetic torsion adapter in trans-tibial amputees during unplanned spin and step turns. Prosthet Orthot Int. 2016;40(5):558565. PubMed ID: 26195621 doi:10.1177/0309364615592698

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Segal AD, Orendurff MS, Czerniecki JM, Shofer JB, Klute GK. Transtibial amputee joint rotation moments during straight-line walking and a common turning task with and without a torsion adapter. J Rehabil Res Dev. 2009;46(3):375383. PubMed ID: 19675989 doi:10.1682/JRRD.2008.06.0070

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Buckley JG, Jones SF, Birch KM. Oxygen consumption during ambulation: comparison of using a prosthesis fitted with and without a tele-torsion device. Arch Phys Med Rehabil. 2002;83(4):576581. PubMed ID: 11932866 doi:10.1053/apmr.2002.30624

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Su P-F, Gard SA, Lipshutz RD, Kuiken TA. The effects of increased prosthetic ankle motions on the gait of persons with bilateral transtibial amputations. Am J Phys Med Rehabil. 2010;89(1):3447. PubMed ID: 20026945 doi:10.1097/PHM.0b013e3181c55ad4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Segal AD, Kracht R, Klute GK. Does a torsion adapter improve functional mobility, pain, and fatigue in patients with transtibial amputation? Clin Orthop Relat Res. 2014;472(10):30853092. PubMed ID: 24733445 doi:10.1007/s11999-014-3607-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Pew C, Klute GK. Design of lower limb prosthesis transverse plane adaptor with variable stiffness. J Med Device. 2015;9(3):035001. doi:10.1115/1.4030505

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Pew C, Klute GK. Pilot testing of a variable stiffness transverse plane adapter for lower limb amputees. Gait Posture. 2017;51:104108. PubMed ID: 27744248 doi:10.1016/j.gaitpost.2016.10.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Pew C, Klute GK. Second generation prototype of a variable stiffness transverse plane adapter of a lower limb prosthesis. Med Eng Phys. 2017;49:2227. PubMed ID: 28807513 doi:10.1016/j.medengphy.2017.07.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Pew C, Segal AD, Neptune RR, Klute GK. Ideal operating conditions for a variable stiffness transverse plane adapter for individuals with lower-limb amputation. J Biomech. 2019;96(11):109330. doi:10.1016/j.jbiomech.2019.109330

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    LaPrè AK, Price MA, Wedge RD, Umberger BR, Sup FC. Approach for gait analysis in persons with limb loss including residuum and prosthesis socket dynamics. Int J Numer Method Biomed Eng. 2018;34(4):111. doi:10.1002/cnm.2936

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Childers WL, Siebert S. Marker-based method to measure movement between the residual limb and a transtibial prosthetic socket. Prosthet Orthot Int. 2016;40(6):720728. PubMed ID: 26527758 doi:10.1177/0309364615610660

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Gholizadeh H, Osman NAA, Kamyab M, Eshraghi A, Abas WABW, Azam MN. Transtibial prosthetic socket pistoning: static evaluation of Seal-In ® X5 and Dermo ® Liner using motion analysis system. Clin Biomech. 2012;27(1):3439. doi:10.1016/j.clinbiomech.2011.07.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Lenz AL, Johnson KA, Bush TR. A new method to quantify liner deformation within a prosthetic socket for below knee amputees. J Biomech. 2018;74:213219. PubMed ID: 29678418 doi:10.1016/j.jbiomech.2018.04.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Zhang M, Lord M, Turner-Smith AR, Roberts VC. Development of a non-linear finite element modelling of the below-knee prosthetic socket interface. Med Eng Phys. 1995;17(8):559566. PubMed ID: 8564149 doi:10.1016/1350-4533(95)00002-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Linder-Ganz E, Gefen A. The effects of pressure and shear on capillary closure in the microstructure of skeletal muscles. Ann Biomed Eng. 2007;35(12):20952107. doi:10.1007/s10439-007-9384-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Convery P, Murray KD. Ultrasound study of the motion of the residual femur within a trans-femoral socket during daily living activities other than gait. Prosthet Orthot Int. 2000;24(3):226232. PubMed ID: 11195358 doi:10.1080/03093640008726552

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Commean PK, Smith KE, Vannier MW. Lower extremity residual limb slippage within the prosthesis. Arch Phys Med Rehabil. 1997;78(5):476485. PubMed ID: 9161365 doi:10.1016/S0003-9993(97)90160-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Chong SY, Röhrle O. Exploring the use of non-image-based ultrasound to detect the position of the residual femur within a stump. PLoS One. 2016;11(10):122. doi:10.1371/journal.pone.0164583

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Grevsten S, Erikson U. A roentgenological study of the stump-socket contact and skeletal displacement in the PTB-suction prosthesis. Ups J Med Sci. 1975;80(1):4957. PubMed ID: 1145905 doi:10.3109/03009737509178991

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Lilja M, Johansson T, Öberg T. Movement of the tibial end in a PTB prosthesis socket: a sagittal X-ray study of the PTB prosthesis. Prosthet Orthot Int. 1993;17(1):2126. PubMed ID: 8337097 doi:10.3109/03093649309164351

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Glaister BC, Schoen JA, Orendurff MS, Klute GK. Mechanical behavior of the human ankle in the transverse plane while turning. IEEE Trans Neural Syst Rehabil Eng. 2007;15(4):552559. PubMed ID: 18198713 doi:10.1109/TNSRE.2007.908944

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Glaister BC, Schoen JA, Orendurff MS, Klute GK. A mechanical model of the human ankle in the transverse plane during straight walking: implications for prosthetic design. J Biomech Eng. 2009;131(3):034501. PubMed ID: 19154072 doi:10.1115/1.3005153

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Rouse EJ, Gregg RD, Hargrove LJ, Sensinger JW. The difference between stiffness and quasi-stiffness in the context of biomechanical modeling. IEEE Trans Biomed Eng. 2013;60(2):562568. PubMed ID: 23212310 doi:10.1109/TBME.2012.2230261

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Hedrick EA, Stanhope SJ, Takahashi KZ. The foot and ankle structures reveal emergent properties analogous to passive springs during human walking. PLoS One. 2019;14(6):e0218047. doi:10.1371/journal.pone.0218047

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Klute GK, Kallfelz CF, Czerniecki JM, Czerniecki MJM. Mechanical properties of prosthetic limbs: adapting to the patient. J Rehabil Res Dev. 2001;38(3):299307. PubMed ID: 11440261

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Sensinger JW, Weir RF. Modeling and preliminary testing socket-residual limb interface stiffness of above-elbow prostheses. IEEE Trans Neural Syst Rehabil Eng. 2008;16(2):184190. PubMed ID: 18403287 doi:10.1109/TNSRE.2008.918388

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Lee WCC, Zhang M, Jia X, Cheung JTM. Finite element modeling of the contact interface between trans-tibial residual limb and prosthetic socket. Med Eng Phys. 2004;26(8):655662. PubMed ID: 15471693 doi:10.1016/j.medengphy.2004.04.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Cagle JC, Reinhall PG, Allyn KJ, et al. A finite element model to assess transtibial prosthetic sockets with elastomeric liners. Med Biol Eng Comput. 2018;56(7):12271240. PubMed ID: 29235055 doi:10.1007/s11517-017-1758-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Tang J, McGrath M, Laszczak P, et al. Characterisation of dynamic couplings at lower limb residuum/socket interface using 3D motion capture. Med Eng Phys. 2015;37(12):11621168. PubMed ID: 26525779 doi:10.1016/j.medengphy.2015.10.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Segal AD, Orendurff MS, Czerniecki JM, Schoen J, Klute GK. Comparison of transtibial amputee and non-amputee biomechanics during a common turning task. Gait Posture. 2011;33(1):4147. PubMed ID: 20974535 doi:10.1016/j.gaitpost.2010.09.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Delp SL, Anderson FC, Arnold AS, et al. OpenSim: open source to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 2007;54(11):19401950. PubMed ID: 18018689 doi:10.1109/TBME.2007.901024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Hicks JL, Uchida TK, Seth A, Rajagopal A, Delp SL. Is my model good enough? Best practices for verification and validation of musculoskeletal models and simulations of movementJ Biomech Eng. 2015;137(2):020905. doi:10.1115/1.4029304

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Gefen A. Risk factors for a pressure-related deep tissue injury: a theoretical model. Med Biol Eng Comput. 2007;45(6):563573. PubMed ID: 17486382 doi:10.1007/s11517-007-0187-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Wren TAL, Gorton GE, Õunpuu S, Tucker CA. Efficacy of clinical gait analysis: a systematic review. Gait Posture. 2011;34(2):149153. PubMed ID: 21646022 doi:10.1016/j.gaitpost.2011.03.027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1 1 0
Full Text Views 235 235 174
PDF Downloads 70 70 41