Material Properties of the Medial Elbow During Passive Valgus and Self-Initiated Varus Torques

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Shear wave elastography imaging of the ulnar collateral ligament (UCL) is used to help understand changes in material properties of the ligament. Ensuring that the wrist flexors are relaxed is essential as muscle contractions can alter the alignment of the medial elbow. The purpose of this study was to determine how the structural and material properties of the medial elbow respond to various elbow torques. The medial elbows of 20 healthy adults, free from upper extremity disorders, were imaged in 3 of the following torque conditions: (1) neutral relaxed, (2) passive valgus, and (3) active varus. Structural properties (ulnohumeral gap and UCL length) using B-mode and material properties (UCL and flexor muscle stiffness) using shear wave were measured. Passive valgus torque opened the ulnohumeral gap (P < .001), and increased UCL (P < .001) and wrist flexor stiffness (P = .001), compared with the neutral condition. Under an active varus contraction, the gap returned back to the neutral position, but UCL (P < .008) and wrist flexor stiffness (P < .004) remained elevated compared with neutral, meaning low-intensity torques can influence structural and material properties of the medial elbow. Therefore, effort should be taken to minimize muscle activation during imaging in order to accurately measure medial elbow properties.

The authors are with the Department of Kinesiology, East Carolina University, Greenville, NC, USA.

Diefenbach (diefenbach8@gmail.com) is corresponding author.
  • 1.

    Drakonaki EE, Allen GM, Wilson DJ. Ultrasound elastography for musculoskeletal applications. Br J Radiol. 2012;85(1019):14351445. PubMed ID: 23091287 doi:10.1259/bjr/93042867

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Taljanovic MS, Gimber LH, Becker GW, et al. Shear-wave elastography: basic physics and musculoskeletal applications. Radiographics. 2017;37(3):855870. PubMed ID: 28493799 doi:10.1148/rg.2017160116

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Chen XM, Cui LG, He P, Shen WW, Qian YJ, Wang JR. Shear wave elastographic characterization of normal and torn Achilles tendons: a pilot study. J Ultrasound Med. 2013;32(3):449455. PubMed ID: 23443185 doi:10.7863/jum.2013.32.3.449

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Chino K, Kawakami Y, Takahashi H. Tissue elasticity of in vivo skeletal muscles measured in the transverse and longitudinal planes using shear wave elastography. Clin Physiol Funct Imaging. 2017;37(4):394399. PubMed ID: 26696446 doi:10.1111/cpf.12315

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Taş S, Onur MR, Yılmaz S, Soylu AR, Korkusuz F. Shear wave elastography is a reliable and repeatable method for measuring the elastic modulus of the rectus femoris muscle and patellar tendon. J Ultrasound Med. 2017;36(3):565570. PubMed ID: 28108983 doi:10.7863/ultra.16.03032

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Rosskopf AB, Ehrmann C, Buck FM, Gerber C, Flück M, Pfirrmann CWA. Quantitative shear-wave US elastography of the supraspinatus muscle: reliability of the method and relation to tendon integrity and muscle quality. Radiology. 2016;278(2):465474. PubMed ID: 26540450 doi:10.1148/radiol.2015150908

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Hou SW, Merkle AN, Babb JS, McCabe R, Gyftopoulos S, Adler RS. Shear wave ultrasound elastographic evaluation of the rotator cuff tendon. J Ultrasound Med. 2017;36(1):95106. PubMed ID: 27914201 doi:10.7863/ultra.15.07041

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Payne C, Watt P, Cercignani M, Webborn N. Reproducibility of shear wave elastography measuresof the Achilles tendon. Skeletal Radiol. 2018;47(6):779784. PubMed ID: 29260258 doi:10.1007/s00256-017-2846-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Aubry S, Nueffer JP, Tanter M, Becce F, Vidal C, Michel F. Viscoelasticity in Achilles tendonopathy: quantitative assessment by using real-time shear-wave elastography. Radiology. 2015;274(3):821829. PubMed ID: 25329764 doi:10.1148/radiol.14140434

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Yoshitake Y, Takai Y, Kanehisa H, Shinohara M. Muscle shear modulus measured with ultrasound shear-wave elastography across a wide range of contraction intensity. Muscle Nerve. 2014;50(1):103113. PubMed ID: 24155045 doi:10.1002/mus.24104

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Shinohara M, Sabra K, Gennisson JL, Fink M, Tanter ML. Real-time visualization of muscle stiffness distribution with ultrasound shear wave imaging during muscle contraction. Muscle Nerve. 2010;42(3):438441. PubMed ID: 20665510 doi:10.1002/mus.21723

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Dieterich AV, Andrade RJ, Le Sant G, et al. Shear wave elastography reveals different degrees of passive and active stiffness of the neck extensor muscles. Eur J Appl Physiol. 2017;117(1):171178. PubMed ID: 27913924 doi:10.1007/s00421-016-3509-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Nordez A, Hug F. Muscle shear elastic modulus measured using supersonic shear imaging is highly related to muscle activity level. J Appl Physiol. 2010;108(5):13891394. PubMed ID: 20167669 doi:10.1152/japplphysiol.01323.2009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Chen FS, Rokito AS, Jobe FW. Medial elbow problems in the overhead-throwing athlete. J Am Acad Orthop Surg. 2001;9(2):99113. PubMed ID: 11281634 doi:10.5435/00124635-200103000-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Jobe FW, Stark H, Lombardo SJ. Reconstruction of the ulnar collateral ligament in athletes. J Bone Joint Surg Am. 1986;68(8):11581163. PubMed ID: 3771597 doi:10.2106/00004623-198668080-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Ciccotti MG, Atanda A, Nazarian LN, Dodson CC, Holmes L, Cohen SB. Stress sonography of the ulnar collateral ligament of the elbow in professional baseball pitchers: a 10-year study. Am J Sports Med. 2014;42(3):544551. PubMed ID: 24473498 doi:10.1177/0363546513516592

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Gupta N, Labis JS, Harris J, et al. Shear-wave elastography of the ulnar collateral ligament of the elbow in healthy volunteers: a pilot study. Skeletal Radiol. 2019;48(8):12411249. PubMed ID: 30706109 doi:10.1007/s00256-019-3162-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Lin C-Y, Sadeghi S, Bader DA, Cortes DH. Ultrasound shear wave elastography of the elbow ulnar collateral ligament: reliability test and a preliminary case study in a baseball pitcher. J Eng Sci Med Diagnostics Ther. 2017;1(1):011004. doi:10.1115/1.4038259

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Bica D, Armen J, Kulas AS, Youngs K, Womack Z. Reliability and precision of stress sonography of the ulnar collateral ligament. J Ultrasound Med. 2015;34(3):371376. PubMed ID: 25715357 doi:10.7863/ultra.34.3.371

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Timmerman LA, Schwartz ML, Andrews JR, Andrews JR. Preoperative evaluation of the ulnar collateral ligament by magnetic resonance imaging and computed tomography arthrography: evaluation in 25 baseball players with surgical confirmation. Am J Sports Med. 1994;22(1):2632. PubMed ID: 8129106 doi:10.1177/036354659402200105

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Singh H, Osbahr DC, Wickham MQ, Kirkendall DT, Speer KP. Valgus laxity of the ulnar collateral ligament of the elbow in collegiate athletes. Am J Sports Med. 2001;29(5):558561. PubMed ID: 11573912 doi:10.1177/03635465010290050601

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Ellenbecker TS, Mattalino AJ, Elam EA, Caplinger RA. Medial elbow joint laxity in professional baseball pitchers: a bilateral comparison using stress radiography. Am J Sports Med. 1998;26(3):420424. PubMed ID: 9617406 doi:10.1177/03635465980260031301

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Takala EP, Toivonen R. Placement of forearm surface EMG electrodes in the assessment of hand loading in manual tasks. Ergonomics. 2013;56(7):11591166. PubMed ID: 23713662 doi:10.1080/00140139.2013.799235

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Buchanan TS, Almdale DPJ, Lewis JL, Rymer WZ. Characteristics of synergic relations during isometric contractions of human elbow muscles. J Neurophysiol. 1986;56(5):12251241. PubMed ID: 3794767 doi:10.1152/jn.1986.56.5.1225

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Curran CJ. Changes in the structural properties of the UCL in collegiate baseball pitchers. [master thesis]. 2017. Greenvillle, NC: East Carolina University.

    • Search Google Scholar
    • Export Citation
  • 26.

    Pexa BS, Ryan ED, Myers JB. Medial elbow joint space increases with valgus stress and decreases when cued to perform a maximal grip contraction. Am J Sports Med. 2018;46(5):11141119. PubMed ID: 29513547 doi:10.1177/0363546518755149

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Cicchetti DV. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol Assess. 1994;6(4):284290. doi:10.1037/1040-3590.6.4.284

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Nazarian LN, Mcshane JM, Ciccotti MG, Kane PLO, Harwood MI. Radiology dynamic US of the anterior band of the ulnar collateral asymptomatic major league. Radiology. 2003;227(1):149154. doi:10.1148/radiol.2271020288

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Shanley E, Smith M, Mayer BK, et al. Using stress ultrasonography to understand the risk of UCL injury among professional baseball pitchers based on ligament morphology and dynamic abnormalities. Orthop J Sport Med. 2018;6(8):2325967118788847. doi:10.1177/2325967118788847

    • Search Google Scholar
    • Export Citation
  • 30.

    Ooi CC, Malliaras P, Schneider ME, Connell DA. “Soft, hard, or just right?” Applications and limitations of axial-strain sonoelastography and shear-wave elastography in the assessment of tendon injuries. Skeletal Radiol. 2014;43(1):112. PubMed ID: 23925561 doi:10.1007/s00256-013-1695-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Toby B, Glidewell E, Morris B, et al. Strength of dynamic stabilizers of the elbow in professional baseball pitchers decreases during baseball season. Orthop J Sport Med. 2015;3(7):12. doi:10.1177/2325967115S00163

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 515 515 142
Full Text Views 8 8 1
PDF Downloads 4 4 1