Changes in Step Characteristics Over a Known Outdoor Surface Transition: The Effect of Parkinson Disease

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

The factors that contribute to the difficulties persons with Parkinson Disease (PwPD) have when negotiating transitions in walking surfaces are not completely known. The authors investigated if PwPD adjusted their step characteristics when negotiating a familiar outdoor surface transition between synthetic concrete and synthetic turf. Force plate and motion capture data were collected for 10 participants with mild to moderate Parkinson disease and 5 healthy older control participants ambulating bidirectionally across the transition between synthetic concrete and synthetic turf. Between groups, PwPD had a significantly higher minimum toe clearance (P = .007) for both directions of travel compared with the healthy control group. Within groups, PwPD significantly increased their hip (P < .001) and ankle (P = .016) range of motion walking from concrete to turf, while the healthy control participants significantly increased their minimum toe clearance (P = .013), margin of stability (P = .019), hip (P < .001) and ankle (P = .038) range of motion, and step length (P < .001). Walking from turf to concrete, both the Parkinson disease group (P = .014) and the healthy control group (P < .001) increased their knee range of motion. Both groups adjusted their step characteristics when negotiating known surface transitions, indicating that surface transitions result in step changes regardless of health status. However, PwPD exhibited overcompensations, particularly in their minimum toe clearance.

Gomez, Gubler, and Merryweather are with the Department of Mechanical Engineering, College of Engineering, The University of Utah, Salt Lake City, UT, USA. Foreman is with the Department of Physical Therapy, College of Health, University of Utah, Salt Lake City, UT, USA.

Merryweather (a.merryweather@utah.edu) is corresponding author.
  • 1.

    Lau LMD, Breteler MM. Epidemiology of Parkinsons disease. Lancet Neurol. 2006;5(6):525535. PubMed ID: 16713924 doi:10.1016/S1474-4422(06)70471-9

  • 2.

    Pahwa R, Lyons KE. Treatment of early Parkinson’s disease. Curr Opin Neurol. 2014;27(4):442449. PubMed ID: 24950010 doi:10.1097/WCO.0000000000000113

  • 3.

    Johnson AM, Almeida QJ, Stough C, Thompson JC, Singarayer R, Jog MS. Visual inspection time in Parkinson’s disease: deficits in early stages of cognitive processing. Neuropsychologia. 2004;42(5):577583. PubMed ID: 14725796 doi:10.1016/j.neuropsychologia.2003.10.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Almeida Q, Frank J, Roy E, et al. An evaluation of sensorimotor integration during locomotion toward a target in Parkinson’s disease. Neuroscience. 2005;134(1):283293. PubMed ID: 15950389 doi:10.1016/j.neuroscience.2005.02.050

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Gurvich C, Georgiou-Karistianis N, Fitzgerald PB, Millist L, White OB. Inhibitory control and spatial working memory in Parkinsons disease. Mov Disord. 2007;22(10):14441450. PubMed ID: 17516454 doi:10.1002/mds.21510

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Ashburn A, Stack E, Ballinger C, Fazakarley L, Fitton C. The circumstances of falls among people with Parkinsons disease and the use of falls diaries to facilitate reporting. Disabil Rehabil. 2008;30(16):12051212. PubMed ID: 18608387 doi:10.1080/09638280701828930

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Roiz RDM, Cacho EWA, Pazinatto MM, Reis JG, Cliquet Jr A, Barasnevicius-Quagliato EM. Gait analysis comparing Parkinsons disease with healthy elderly subjects. Arq Neuropsiquiatr. 2010;68(1):8186. doi:10.1590/S0004-282X2010000100018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Almeida QJ, Lebold CA. Freezing of gait in Parkinsons disease: a perceptual cause for a motor impairment? J Neurol Neurosurg Psychiatry. 2009;81(5):513518. PubMed ID: 19758982 doi:10.1136/jnnp.2008.160580

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Hausdorff JM, Schaafsma JD, Balash Y, Bartels AL, Gurevich T, Giladi N. Impaired regulation of stride variability in Parkinsons disease subjects with freezing of gait. Exp Brain Res. 2003;149(2):187194. PubMed ID: 12610686 doi:10.1007/s00221-002-1354-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Samii A, Nutt JG, Ransom BR. Parkinsons disease. Lancet. 2004;363(9423):17831793. PubMed ID: 15172778 doi:10.1016/S0140-6736(04)16305-8

  • 11.

    Xu H, Hunt M, Foreman KB, Zhao J, Merryweather A. Gait alterations on irregular surface in people with Parkinsons disease. Clin Biomech. 2018;57:9398. doi:10.1016/j.clinbiomech.2018.06.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Xu H, Merryweather A, Foreman KB, Zhao J, Hunt M. Dual-task interference during gait on irregular terrain in people with Parkinson’s disease. Gait Posture. 2018;63:1722. PubMed ID: 29702370 doi:10.1016/j.gaitpost.2018.04.027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Bunterngchit Y, Lockhart T, Woldstad JC, Smith JL. Age related effects of transitional floor surfaces and obstruction of view on gait characteristics related to slips and falls. Int J Indust Ergon. 2000;25(3):223232. doi:10.1016/S0169-8141(99)00012-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Kim HN. The Effects of Transitioning Between Different Floor Surfaces on Gait Characteristics of the Elderly. Virginia Tech; 2005.

  • 15.

    Kim HN, Lockhart TE. The effects of transitioning between different floor coverings on gait characteristics of older adults. Proc Hum Factors Ergon Soc Annu Meet. 2019;63(1):12371238. doi:10.1177/1071181319631118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Gray P, Hildebrand K. Fall risk factors in Parkinson’s disease. J Neurosci Nurs. 2000;32(4):222228. PubMed ID: 10994536 doi:10.1097/01376517-200008000-00006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Leardini A, Biagi F, Merlo A, Belvedere C, Benedetti MG. Multi-segment trunk kinematics during locomotion and elementary exercises. Clin Biomech. 2011;26(6):562571. doi:10.1016/j.clinbiomech.2011.01.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Leardini A, Sawacha Z, Paolini G, Ingrosso S, Nativo R, Benedetti MG. A new anatomically based protocol for gait analysis in children. Gait Posture. 2007;26(4):560571. PubMed ID: 17291764 doi:10.1016/j.gaitpost.2006.12.018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Terry K, Stanley C, Damiano D. A new perspective on the walking margin of stability. J Appl Biomech. 2014;30(6):737741. PubMed ID: 25185117 doi:10.1123/jab.2014-0089

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Wu T, Hallett M, Chan P. Motor automaticity in Parkinson’s disease. Neurobiol Dis. 2015;82:226234. PubMed ID: 26102020 doi:10.1016/j.nbd.2015.06.014

  • 21.

    Cowie D, Limousin P, Peters A, Day B. Insights into the neural control of locomotion from walking through doorways in Parkinson’s disease. Neuropsychologia. 2010;48(9):27502757. PubMed ID: 20519135 doi:10.1016/j.neuropsychologia.2010.05.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    McCrum C, Willems P, Karamanidis K, Meijer K. Stability-normalised walking speed: A new approach for human gait perturbation research. Journal of Biomechanics. 2019;87:4853. doi:10.1016/j.jbiomech.2019.02.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Schulz BW. A new measure of trip risk integrating minimum foot clearance and dynamic stability across the swing phase of gait. J Biomech. 2017;55:107112. PubMed ID: 28302314 doi:10.1016/j.jbiomech.2017.02.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Merryweather A, Yoo B, Bloswick D. Gait characteristics associated with trip-induced falls on level and sloped irregular surfaces. Minerals. 2011;1(1):109121. doi:10.3390/min1010109

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Menant JC, Steele JR, Menz HB, Munro BJ, Lord SR. Effects of walking surfaces and footwear on temporo-spatial gait parameters in young and older people. Gait Posture. 2009;29(3):392397. PubMed ID: 19041245 doi:10.1016/j.gaitpost.2008.10.057

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Thies SB, Richardson JK, Ashton-Miller JA. Effects of surface irregularity and lighting on step variability during gait. Gait Posture. 2005;22(1):2631. PubMed ID: 15996588 doi:10.1016/j.gaitpost.2004.06.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Peebles AT, Reinholdt A, Bruetsch AP, Lynch SG, Huisinga JM. Dynamic margin of stability during gait is altered in persons with multiple sclerosis. J Biomech. 2016;49(16):39493955. PubMed ID: 27889188 doi:10.1016/j.jbiomech.2016.11.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Heremans E, Nieuwboer A, Spildooren J, et al. Cognitive aspects of freezing of gait in Parkinson’s disease: a challenge for rehabilitation. J Neural Transm. 2013;120(4):543557. PubMed ID: 23328947 doi:10.1007/s00702-012-0964-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Galna B, Murphy A, Morris M. Obstacle crossing in people with Parkinson’s disease: foot clearance and spatiotemporal deficits. Hum Mov Sci. 2010;29(5):843852. PubMed ID: 19962206 doi:10.1016/j.humov.2009.09.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Chen H, Ashton-Miller J, Alexander N, Schultz A. Stepping over obstacles: gait patterns of healthy young and old adults. J Gerontol. 1991;46(6):M196M203. PubMed ID: 1940078 doi:10.1093/geronj/46.6.M196

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Marigold DS, Patla AE. Age-related changes in gait for multi-surface terrain. Gait Posture. 2008;27(4):689696. PubMed ID: 17962018 doi:10.1016/j.gaitpost.2007.09.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Menz HB. Age-related differences in walking stability. Age Ageing. 2003;32(2):137142. PubMed ID: 12615555 doi:10.1093/ageing/32.2.137

  • 33.

    Cham R, Redfern MS. Changes in gait when anticipating slippery floors. Gait & Posture. 2002;15(2):159171. PubMed ID: 11869910 doi:10.1016/S0966-6362(01)00150-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Alcock L, Galna B, Perkins R, Lord S, Rochester L. Step length determines minimum toe clearance in older adults and people with Parkinson’s disease. J Biomech. 2018;71:3036. PubMed ID: 29429622 doi:10.1016/j.jbiomech.2017.12.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Vaugoyeau M, Viallet F, Aurenty R, Assaiante C, Mesure S, Massion J. Axial rotation in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2006;77(7):815821. PubMed ID: 16574736 doi:10.1136/jnnp.2004.050666

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Morris M. Movement disorders in people with Parkinson disease: a model for physical therapy. Phys Ther. 2000;80(6):578597. PubMed ID: 10842411 doi:10.1093/ptj/80.6.578

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Morris M, Iansek R, Summers J, Matyas T. Motor control considerations for the rehabilitation of gait in Parkinson’s disease. Adv Psychol. 1995;111:6193.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 357 357 81
Full Text Views 17 17 2
PDF Downloads 7 7 1