Trunk Postural Control Strategies Among Persons With Lower-Limb Amputation While Walking and Performing a Concurrent Task

in Journal of Applied Biomechanics
View More View Less
  • 1 Walter Reed National Military Medical Center
  • 2 DoD-VA Extremity Trauma and Amputation Center of Excellence
  • 3 Henry M. Jackson Foundation for the Advancement of Military Medicine
  • 4 Uniformed Services University of the Health Sciences
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Altered trunk movements during gait in persons with lower-limb amputation are often associated with an increased risk for secondary health conditions; however, the postural control strategies underlying such alterations remain unclear. In this secondary analysis, the authors employed nonlinear measures of triplanar trunk accelerations via short-term Lyapunov exponents to investigate trunk local stability as well as spatiotemporal gait parameters to describe gait mechanics. The authors also evaluated the influence of a concurrent task on trunk local stability and gait mechanics to explore if competition for neuromuscular processing resources can assist in identifying unique strategies to control kinematic variability. Sixteen males with amputation—8 transtibial and 8 transfemoral—and 8 uninjured males (controls) walked on a treadmill at their self-selected speed (mean = 1.2 m/s ±10%) in 5 experimental conditions (8 min each): 4 while performing a concurrent task (2 walking and 2 seated) and 1 with no concurrent task. Individuals with amputation demonstrated significantly smaller Lyapunov exponents than controls in all 3 planes of motion, regardless of concurrent task or level of amputation (P < .0001). Individuals with transfemoral amputation walked with wider strides compared with individuals with transtibial amputation and controls (P < .0001). Individuals with amputation demonstrated more trunk kinematic variability in the presence of wider strides compared with individuals without amputation, and it appears that performing a concurrent cognitive task while walking did not change trunk or gait mechanics.

Butowicz, Acasio, and Hendershot are with the Research and Development Section, Walter Reed National Military Medical Center, Bethesda, MD, USA. Butowicz and Hendershot are also with the Research & Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, USA. Acasio is also with the Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA. Hendershot is also with the Department of Rehabilitation Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.

Hendershot (bradford.d.hendershot2.civ@mail.mil) is corresponding author.
  • 1.

    Devan H, Hendrick P, Ribeiro DC, Hale LA, Carman A. Asymmetrical movements of the lumbopelvic region: is this a potential mechanism for low back pain in people with lower limb amputation? Med Hypotheses. 2014;82(1):7785. doi:10.1016/j.mehy.2013.11.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Hendershot BD, Wolf EJ. Three-dimensional joint reaction forces and moments at the low back during over-ground walking in persons with unilateral lower-extremity amputation. Clin Biomech. 2014;29(3):235242. doi:10.1016/j.clinbiomech.2013.12.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Goujon-Pillet H, Sapin E, Fode P, Lavaste F. Three-dimensional motions of trunk and pelvis during transfemoral amputee gait. Arch Phys Med Rehabil. 2008;89(1):8794. PubMed ID: 18164336 doi:10.1016/j.apmr.2007.08.136

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Jaegers SM, Arendzen JH, de Jongh HJ. Prosthetic gait of unilateral transfemoral amputees: a kinematic study. Arch Phys Med Rehabil. 1995;76(8):736743. PubMed ID: 7632129 doi:10.1016/S0003-9993(95)80528-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Russell Esposito E, Wilken JM. The relationship between pelvis-trunk coordination and low back pain in individuals with transfemoral amputations. Gait Posture. 2014;40(4):640646. PubMed ID: 25155692 doi:10.1016/j.gaitpost.2014.07.019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Buzzi UH, Stergiou N, Kurz MJ, Hageman PA, Heidel J. Nonlinear dynamics indicates aging affects variability during gait. Clin Biomech. 2003;18(5):435443. doi:10.1016/S0268-0033(03)00029-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Dingwell JB, Cusumano JP. Nonlinear time series analysis of normal and pathological human walking. Chaos. 2000;10(4):848863. PubMed ID: 12779434 doi:10.1063/1.1324008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Dingwell JB, Marin LC. Kinematic variability and local dynamic stability of upper body motions when walking at different speeds. J Biomech. 2006;39(3):444452. doi:10.1016/j.jbiomech.2004.12.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    England SA, Granata KP. The influence of gait speed on local dynamic stability of walking. Gait Posture. 2007;25(2):172178. PubMed ID: 16621565 doi:10.1016/j.gaitpost.2006.03.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Stergiou N, Moraiti C, Giakas G, Ristanis S, Georgoulis AD. The effect of the walking speed on the stability of the anterior cruciate ligament deficient knee. Clin Biomech. 2004;19(9):957963. doi:10.1016/j.clinbiomech.2004.06.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Gauthier-Gagnon C, Grise MC, Potvin D. Enabling factors related to prosthetic use by people with transtibial and transfemoral amputation. Arch Phys Med Rehabil. 1999;80(6):706713. PubMed ID: 10378500 doi:10.1016/S0003-9993(99)90177-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Miller WC, Deathe AB, Speechley M, Koval J. The influence of falling, fear of falling, and balance confidence on prosthetic mobility and social activity among individuals with a lower extremity amputation. Arch Phys Med Rehabil. 2001;82(9):12381244. PubMed ID: 11552197 doi:10.1053/apmr.2001.25079

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Morgan SJ, Hafner BJ, Kelly VE. The effects of a concurrent task on walking in persons with transfemoral amputation compared to persons without limb loss. Prosthet Orthot Int. 2016;40(4):490496. doi:10.1177/0309364615596066

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Lamoth CJ, Ainsworth E, Polomski W, Houdijk H. Variability and stability analysis of walking of transfemoral amputees. Med Eng Phys. 2010;32(9):10091014. doi:10.1016/j.medengphy.2010.07.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Van Gemmert AW, Van Galen GP. Stress, neuromotor noise, and human performance: a theoretical perspective. J Exp Psychol: Human Percep Perform. 1997;23(5):1299.

    • Search Google Scholar
    • Export Citation
  • 16.

    Smits-Engelsman B, Wilson PH. Noise, variability, and motor performance in developmental coordination disorder. Dev Med Child Neurol. 2013;55(s4):6972.

  • 17.

    Dingwell JB, Cusumano JP, Cavanagh PR, Sternad D. Local dynamic stability versus kinematic variability of continuous overground and treadmill walking. J Biomech Eng. 2001;123(1):2732. doi:10.1115/1.1336798

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Pruziner AL, Shaw EP, Rietschel JC, et al. Biomechanical and neurocognitive performance outcomes of walking with transtibial limb loss while challenged by a concurrent task. Exp Brain Res. 2019;237(2):477491. PubMed ID: 30460393 doi:10.1007/s00221-018-5419-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Shaw EP, Rietschel JC, Hendershot BD, et al. A comparison of mental workload in individuals with transtibial and transfemoral lower limb loss during dual-task walking under varying demand. J Int Neuropsychol Soc. 2019;25(9):985997. PubMed ID: 31462338 doi:10.1017/S1355617719000602

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Shaw EP, Rietschel JC, Hendershot BD, et al. Measurement of attentional reserve and mental effort for cognitive workload assessment under various task demands during dual-task walking. Biol Psychol. 2018;134:3951. PubMed ID: 29378284 doi:10.1016/j.biopsycho.2018.01.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Shaw E, Rietschel JC, Hendershot BD, et al. Combined assessment of cognitive workload under various levels of challenge during dual-task walking. J Sport Exer Psychol. 2017;39:S198.

    • Search Google Scholar
    • Export Citation
  • 22.

    Rosenstein MT, Collins JJ, De Luca CJ. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D. 1993;65(1–2):117134. doi:10.1016/0167-2789(93)90009-P

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Kennel MB, Brown R, Abarbanel HD. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys Rev A. 1992;45(6):34033411. PubMed ID: 9907388 doi:10.1103/PhysRevA.45.3403

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Miyake S, Kumashiro M. Subjective mental workload assessment technique. Japan J Ergon. 1993;29(6):399408. doi:10.5100/jje.29.399

  • 25.

    Hancock DJ, Ste-Marie DM. Gaze behaviors and decision making accuracy of higher-and lower-level ice hockey referees. Psychol Sport Exerc. 2013;14(1):6671. doi:10.1016/j.psychsport.2012.08.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Macmillan NA, Creelman CD. Detection Theory: A User’s Guide. New York: Psychology press; 2004.

  • 27.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd. In: Hillsdale, NJ: erlbaum; 1988.

  • 28.

    Yogev-Seligmann G, Hausdorff JM, Giladi N. The role of executive function and attention in gait. Mov. Disord. 2008;23(3):329342. PubMed ID: 18058946

  • 29.

    Kelly VE, Eusterbrock AJ, Shumway-Cook A. Factors influencing dynamic prioritization during dual-task walking in healthy young adults. Gait Posture. 2013;37(1):131134. PubMed ID: 22940543 doi:10.1016/j.gaitpost.2012.05.031

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Asai T, Doi T, Hirata S, Ando H. Dual tasking affects lateral trunk control in healthy younger and older adults. Gait Posture. 2013;38(4):830836. PubMed ID: 23665065 doi:10.1016/j.gaitpost.2013.04.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Toebes MJ, Hoozemans MJ, Furrer R, Dekker J, van Dieen JH. Local dynamic stability and variability of gait are associated with fall history in elderly subjects. Gait Posture. 2012;36(3):527531. PubMed ID: 22748312 doi:10.1016/j.gaitpost.2012.05.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Dingwell J, Cusumano J, Sternad D, Cavanagh PR. Slower speeds in patients with diabetic neuropathy lead to improved local dynamic stability of continuous overground walking. J Biomech. 2000;33(10):12691277. doi:10.1016/S0021-9290(00)00092-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Lamoth CJ, van Lummel RC, Beek PJ. Athletic skill level is reflected in body sway: a test case for accelometry in combination with stochastic dynamics. Gait Posture. 2009;29(4):546551. PubMed ID: 19138522 doi:10.1016/j.gaitpost.2008.12.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Roerdink M, De Haart M, Daffertshofer A, Donker SF, Geurts A, Beek P. Dynamical structure of center-of-pressure trajectories in patients recovering from stroke. Exp Brain Res. 2006;174(2):256. PubMed ID: 16685508 doi:10.1007/s00221-006-0441-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 138 138 138
Full Text Views 12 12 12
PDF Downloads 6 6 6