Joint Coordination and Stiffness During Landing in Individuals With Chronic Ankle Instability

in Journal of Applied Biomechanics
View More View Less
  • 1 Texas State University
  • 2 Incheon National University
  • 3 University of Georgia
  • 4 Oregon State University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

The purpose of the present study was to examine the effect of chronic ankle instability (CAI) on lower-extremity joint coordination and stiffness during landing. A total of 21 female participants with CAI and 21 pair-matched healthy controls participated in the study. Lower-extremity joint kinematics were collected using a 7-camera motion capture system, and ground reaction forces were collected using 2 force plates during drop landings. Coupling angles were computed based on the vector coding method to assess joint coordination. Coupling angles were compared between the CAI and control groups using circular Watson–Williams tests. Joint stiffness was compared between the groups using independent t tests. Participants with CAI exhibited strategies involving altered joint coordination including a knee flexion dominant pattern during 30% and 70% of their landing phase and a more in-phase motion pattern between the knee and hip joints during 30% and 40% and 90% and 100% of the landing phase. In addition, increased ankle inversion and knee flexion stiffness were observed in the CAI group. These altered joint coordination and stiffness could be considered as a protective strategy utilized to effectively absorb energy, stabilize the body and ankle, and prevent excessive ankle inversion. However, this strategy could result in greater mechanical demands on the knee joint.

Li is with the Department of Health and Human Performance, Texas State University, San Marcos, TX, USA. Ko is with the Division of Health & Kinesiology, Incheon National University, Republic of Korea, South Korea. Walker and Simpson are with the Department of Kinesiology, University of Georgia, Athens, GA, USA. Brown is with the Department of Athletic Training and Kinesiology, Oregon State University, Corvallis, OR, USA.

Li (yumeng.li@txstate.edu) is corresponding author.
  • 1.

    Fong DT-P, Hong Y, Chan L-K, Yung PS-H, Chan K-M. A systematic review on ankle injury and ankle sprain in sports. Sport Med. 2007;37(1):7394. doi:10.2165/00007256-200737010-00006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Nelson AJ, Collins CL, Yard EE, Fields SK, Comstock RD. Ankle injuries among United States high school sports athletes, 2005–2006. J Athl Train (National Athl Trainers’ Assoc. 2007;42(3):381387.

    • Search Google Scholar
    • Export Citation
  • 3.

    Doherty C, Bleakley C, Hertel J, Caulfield B, Ryan J, Delahunt E. Recovery from a first-time lateral ankle sprain and the predictors of chronic ankle instability: a prospective cohort analysis. Am J Sports Med. 2016;44(4):9951003. PubMed ID: 26912285 doi:10.1177/0363546516628870

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Hertel J, Corbett RO. An updated model of chronic ankle instability. J Athl Train. 2019;54(6):572588. PubMed ID: 31162943 doi:10.4085/1062-6050-344-18

  • 5.

    Gribble P, Delahunt E, Bleakley C, et al. Selection criteria for patients with chronic ankle instability in controlled research: a position statement of the international ankle consortium. J Orthop Sport Phys Ther. 2013;43(8):585591. doi:10.2519/jospt.2013.0303

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Hertel J. Sensorimotor deficits with ankle sprains and chronic ankle instability. Clin Sports Med. 2008;27(3):353370. PubMed ID: 18503872 doi:10.1016/j.csm.2008.03.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Anandacoomarasamy A, Barnsley L. Long term outcomes of inversion ankle injuries. Br J Sport Med. 2005;39(3):e14. doi:10.1136/bjsm.2004.011676

  • 8.

    Konradsen L, Voigt M. Inversion injury biomechanics in functional ankle instability: a cadaver study of simulated gait. Scand J Med Sci Sports. 2002;12(6):329336. PubMed ID: 12453159 doi:10.1034/j.1600-0838.2002.00108.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Hubbard-Turner T, Turner MJ. Physical activity levels in college students with chronic ankle instability. J Athl Train. 2015;50(7):742747. PubMed ID: 25898110 doi:10.4085/1062-6050-50.3.05

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Kim H, Son SJUN, Seeley MK, Hopkins JTY. Kinetic compensations due to chronic ankle instability during landing and jumping. Med Sci Sport Exerc. 2018;50(2):308317. doi:10.1249/MSS.0000000000001442

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Lin J-Z, Lin Y-A, Lee H-J. Are landing biomechanics altered in elite athletes with chronic ankle instability. J Sports Sci Med. 2019;18(4):653662. PubMed ID: 31827349

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Simpson JD, Stewart EM, Chander H, Knight AC, Macias DM. Individuals with chronic ankle instability exhibit dynamic postural stability deficits and altered unilateral landing biomechanics: A systematic review. Phys Ther Sport. 2019;37:210219. PubMed ID: 29914742 doi:10.1016/j.ptsp.2018.06.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Li Y, Ko J, Walker M, et al. Does chronic ankle instability influence knee biomechanics of females during inverted surface landings? Int J Sports Med. September 2018;39:10091017. doi:10.1055/s-0044-102130

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Brown C, Padua D, Marshall SW, Guskiewicz K. Individuals with mechanical ankle instability exhibit different motion patterns than those with functional ankle instability and ankle sprain copers. Clin Biomech. 2008;23(6):822831. doi:10.1016/j.clinbiomech.2008.02.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Monaghan K, Delahunt E, Caulfield B. Ankle function during gait in patients with chronic ankle instability compared to controls. Clin Biomech. 2006;21(2):168174. http://10.0.3.248/j.clinbiomech.2005.09.004. doi:10.1016/j.clinbiomech.2005.09.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Dejong AF, Koldenhoven RM, Hertel J. Proximal adaptations in chronic ankle instability: systematic review and meta-analysis. Med Sci Sports Exerc. 2020;52(7):15631575. PubMed ID: 31977639

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Caulfield BM, Garrett M. Functional instability of the ankle: differences in patterns of ankle and knee movement prior to and post landing in a single leg jump. Int J Sports Med. 2002;23(1):6468. doi:10.1055/s-2002-19272

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Doherty C, Bleakley C, Hertel J, Caulfield B, Ryan J, Delahunt E. Single-leg drop landing movement strategies in participants with chronic ankle instability compared with lateral ankle sprain “copers”. Knee Surgery, Sport Traumatol Arthrosc. 2016;24(4):10491059. doi:10.1007/s00167-015-3852-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Terada M, Pfile KR, Pietrosimone BG, Gribble PA. Effects of chronic ankle instability on energy dissipation in the lower extremity. Med Sci Sports Exerc. 2013;45(11):21202128. PubMed ID: 23660591 doi:10.1249/MSS.0b013e31829a3d0b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Doherty C, Bleakley C, Hertel J, et al. Inter-joint coordination strategies during unilateral stance 6-months following first-time lateral ankle sprain. Clin Biomech. 2015;30(2):129135. http://10.0.3.248/j.clinbiomech.2014.12.011. doi:10.1016/j.clinbiomech.2014.12.011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Sinsurin K, Vachalathiti R, Srisangboriboon S, Richards J. Knee joint coordination during single-leg landing in different directions. Sport Biomech. January 2018;19:113. doi:10.1080/14763141.2018.1510024

    • Search Google Scholar
    • Export Citation
  • 22.

    Kim H, Son SJ, Seeley MK, Hopkins JT. Altered movement biomechanics in chronic ankle instability, coper, and control groups: energy absorption and distribution implications. J Athl Train 2019;54(6):708717. doi:10.4085/1062-6050-483-17

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Hughes G, Watkins J. Lower limb coordination and stiffness during landing from volleyball block jumps. Res Sport Med. 2008;16(2):138154. doi:10.1080/15438620802103999

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Robert JB, Harrison PC III, Irene McClay D. Lower extremity stiffness: implications for performance and injury. Clin Biomech. 2003;18(6):511. doi:10.1016/S0268-0033(03)00071-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Lin C-FC-W, Chen C-Y, Lin C-FC-W. Dynamic ankle control in athletes with ankle instability during sports maneuvers. Am J Sports Med. 2011;39(9):20072015. PubMed ID: 21622814 doi:10.1177/0363546511406868

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Palmieri-Smith RM, McLean SG, Ashton-Miller JA, Wojtys EM. Association of quadriceps and hamstrings cocontraction patterns with knee joint loading. J Athl Train. 2009;44(3):256263. PubMed ID: 19478837 doi:10.4085/1062-6050-44.3.256

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Yeow CH, Lee PVS, Goh JCH. Sagittal knee joint kinematics and energetics in response to different landing heights and techniques. Knee. 2010;17(2):127131. PubMed ID: 19720537 doi:10.1016/j.knee.2009.07.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Kulas AS, Schmitz RJ, Schultz SJ, Watson MA, Perrin DH. Energy absorption as a predictor of leg impedance in highly trained females. J Appl Biomech. 2006;22(3):177185. PubMed ID: 17215549 doi:10.1123/jab.22.3.177

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Needham R, Naemi R, Chockalingam N. A new coordination pattern classification to assess gait kinematics when utilising a modified vector coding technique. J Biomech. 2015;48(12):35063511. PubMed ID: 26303167 doi:10.1016/j.jbiomech.2015.07.023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Needham R, Naemi R, Chockalingam N. Quantifying lumbar–pelvis coordination during gait using a modified vector coding technique. J Biomech. 2014;47(5):10201026. PubMed ID: 24485511 doi:10.1016/j.jbiomech.2013.12.032

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Bisseling RW, Hof AL. Handling of impact forces in inverse dynamics. J Biomech. 2006;39(13):24382444. PubMed ID: 16209869 doi:10.1016/j.jbiomech.2005.07.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Kristianslund E, Krosshaug T, Van den Bogert AJ. Effect of low pass filtering on joint moments from inverse dynamics: implications for injury prevention. J Biomech. 2012;45(4):666671. PubMed ID: 22227316 doi:10.1016/j.jbiomech.2011.12.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Ramakrishnan K, Kadaba M, Wootten M. Lower extremity joint moments and ground reaction torque in adult gait. Biomech Norm Prosthet gait. 1987;7:8792.

    • Search Google Scholar
    • Export Citation
  • 34.

    Hamill J, Palmer C, Van Emmerik REA. Coordinative variability and overuse injury. Sport Med Arthrosc Rehabil Ther Technol. 2012;4(1):4553. doi:10.1186/1758-2555-4-45

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Watson GS, Williams EJ. On the construction of significance tests on the circle and the sphere. Biometrika. 1956;43(3/4):344352. doi:10.2307/2332913

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Berens P. CircStat: a MATLAB toolbox for circular statistics. J Stat Softw. 2009;31(10). doi:10.18637/jss.v031.i10

  • 37.

    Blache Y, de Fontenay BP, Argaud S, Monteil K. Asymmetry of inter-joint coordination during single leg jump after anterior cruciate ligament reconstruction. Int J Sports Med. 2017;38(2):159167. PubMed ID: 27984842

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Heiderscheit BC, Hamill J, van Emmerik REA. Variability of stride characteristics and joint coordination among individuals with unilateral patellofemoral pain. J Appl Biomech. 2002;18(2):110121. doi:10.1123/jab.18.2.110

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Favre J, Clancy C, Dowling AV, Andriacchi TP. Modification of knee flexion angle has patient-specific effects on anterior cruciate ligament injury risk factors during jump landing. Am J Sports Med. 2016;44(6):15401546. PubMed ID: 26983457 doi:10.1177/0363546516634000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Li Y. Does chronic ankle instability affect lower extremity biomechanics and muscle activation of females during landings? (Unpublished doctoral dissertation). University of Georgia. 2016.

    • Search Google Scholar
    • Export Citation
  • 41.

    Doherty C, Bleakley C, Hertel J, Caulfield B, Ryan J, Delahunt E. Single-leg drop landing movement strategies 6 months following first-time acute lateral ankle sprain injury. Scand J Med Sci Sport. 2015;25(6):806817. doi:10.1111/sms.12390

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Bartlett R, Wheat J, Robins M. Is movement variability important for sports biomechanists? Sport Biomech. 2007;6(2):224243. doi:10.1080/14763140701322994

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Hamill J, van Emmerik REA, Heiderscheit BC, Li L. A dynamical systems approach to lower extremity running injuries. Clin Biomech. 1999;14(5):297308. doi:10.1016/S0268-0033(98)90092-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Kiefer AW, Ford KR, Paterno MV, et al. Inter-segmental postural coordination measures differentiate athletes with ACL reconstruction from uninjured athletes. Gait Posture. 2013;37(2):149153. PubMed ID: 23219784 doi:10.1016/j.gaitpost.2012.05.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Fox J, Docherty CL, Schrader J, Applegate T. Eccentric plantar-flexor torque deficits in participants with functional ankle instability. J Athl Train. 2008;43(1):5154. PubMed ID: 18335013 doi:10.4085/1062-6050-43.1.51

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Li Y, Ko J, Walker MA, et al. Does chronic ankle instability influence lower extremity muscle activation of females during landing? J Electromyogr Kinesiol. 2018;38:8187. PubMed ID: 29175719 doi:10.1016/j.jelekin.2017.11.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 171 171 171
Full Text Views 22 22 22
PDF Downloads 20 20 20