Influence of Side Uncertainty on Knee Kinematics of Female Handball Athletes During Sidestep Cutting Maneuvers

in Journal of Applied Biomechanics
View More View Less
  • 1 University of Sao Paulo
  • | 2 Madonna Rehabilitation Hospitals
  • | 3 São Paulo State University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Noncontact anterior cruciate ligament ruptures generally occur during unanticipated sidestep cutting maneuvers when athletes have their visual attention focused on the opponent. The authors investigated the influence of uncertainty related to the side to perform the sidestep cutting maneuver on knee kinematics of female handball athletes. A total of 31 female handball athletes performed the sidestep cutting maneuver during anticipated and uncertain conditions. During the uncertain condition, visual cues indicated the direction of the reactive sidestep cutting maneuver. Between-condition differences were compared using the Student t test for paired samples calculated with statistical parametric mapping. Lower knee flexion angle was detected during the uncertain condition compared with the anticipated condition for the nondominant limb (0%–8% of the sidestep cycle). Knee abduction was larger during the uncertain condition for both the dominant (15%–41% of the sidestep cycle) and nondominant (0%–18% of the sidestep cycle) limbs compared with the anticipated condition. The nondominant leg showed higher knee abduction (36%–68% of the sidestep cycle) during the uncertain condition compared with the anticipated condition. The athletes’ approach velocity was slower during the uncertain condition. The uncertain condition impacted knee kinematics and potentially positioned the joint at greater risk of injury by decreasing the flexion angle in the nondominant leg and increasing the joint valgus bilaterally.

Bedo, Moraes, Mariano, Vieira, and Santiago are with the Rehabilitation and Functional Performance Program, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil. Bedo, Moraes, Mariano, Andrade, and Santiago are with the Biomechanics and Motor Control Laboratory, School of Physical Education and Sports of Ribeirao Preto, University of São Paulo, São Paulo, Brazil. Cesar is with the Institute for Rehabilitation Science and Engineering, Madonna Rehabilitation Hospitals, Lincoln, NE, USA. Vieira is with the Human Movement Research Laboratory, São Paulo State University, São Paulo, Brazil.

Bedo (bruno.bedo@usp.br) is corresponding author.
  • 1.

    Alentorn-Geli E, Myer GD, Silvers HJ, et al. . Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 1: mechanisms of injury and underlying risk factors. Knee Surg Sports Traumatol Arthrosc. 2009;17(7):705729. PubMed ID: 19452139 doi:10.1007/s00167-009-0813-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Bedi JF, Cresswell AG, Engel TJ, Nicol SM. Increase in jumping height associated with maximal effort vertical depth jumps. Res Q Exerc Sport. 1987;58(1):1115. doi:10.1080/02701367.1987.10605413

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Brophy R, Silvers HJ, Gonzales T, Mandelbaum BR. Gender influences: the role of leg dominance in ACL injury among soccer players. Br J Sports Med. 2010;44(10):694697. PubMed ID: 20542974 doi:10.1136/bjsm.2008.051243

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Ruedl G, Webhofer M, Helle K, et al. . Leg dominance is a risk factor for noncontact anterior cruciate ligament injuries in female recreational skiers. Am J Sports Med. 2012;40(6):12691273. PubMed ID: 22427619 doi:10.1177/0363546512439027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Hewett TE, Torg JS, Boden BP. Video analysis of trunk and knee motion during non-contact anterior cruciate ligament injury in female athletes: lateral trunk and knee abduction motion are combined components of the injury mechanism. Br J Sport Med. 2009;43(6):417422. PubMed ID: 19372088 doi:10.1136/bjsm.2009.059162

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Lee MJC, Lloyd DG, Lay BS, Bourke PD, Alderson JA. Different visual stimuli affect body reorientation strategies during sidestepping. Scand J Med Sci Sports. 2017;27(5):492500. PubMed ID: 26926713 doi:10.1111/sms.12668

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Kristianslund E, Faul O, Bahr R, Myklebust G, Krosshaug T. Sidestep cutting technique and knee abduction loading: implications for ACL prevention exercises. Br J Sport Med. 2014;48(9):779783. PubMed ID: 23258848 doi:10.1136/bjsports-2012-091370

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Monfort SM, Pradarelli JJ, Grooms DR, Hutchison KA, Onate JA, Chaudhari AMW. Visual-spatial memory deficits are related to increased knee valgus angle during a sport-specific sidestep cut. Am J Sports Med. 2019;47(6):14881495. PubMed ID: 30986095 doi:10.1177/0363546519834544

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Besier TF, Lloyd DG, Cochrane JL, Ackland TR. External loading of the knee joint during running and cutting maneuvers. Med Sci Sport Exerc. 2001;33(7):11681175. PubMed ID: 11445764 doi:10.1097/00005768-200107000-00014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Dempsey AR, Lloyd DG, Elliott BC, Steele JR, Munro BJ. Changing sidestep cutting technique reduces knee valgus loading. Am J Sport Med. 2009;37(11):21942200. PubMed ID: 19509415 doi:10.1177/0363546509334373

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    McLean SG, Huang X, van den Bogert AJ. Association between lower extremity posture at contact and peak knee valgus moment during sidestepping: implications for ACL injury. Clin Biomech. 2005;20(8):863870. PubMed ID: 16005555 doi:10.1016/j.clinbiomech.2005.05.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    McLean SG, Lipfert SW, van den Bogert AJ. Effect of gender and defensive opponent on the biomechanics of sidestep cutting. Med Sci Sports Exerc. 2004;36(6):10081016. PubMed ID: 15179171 doi:10.1249/01.MSS.0000128180.51443.83

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Mok KM, Bahr R, Krosshaug T. Reliability of lower limb biomechanics in two sport-specific sidestep cutting tasks. Sports Biomech. 2018;17(2):157167. PubMed ID: 28281390 doi:10.1080/14763141.2016.1260766

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Cesar GM, Havens KL, Chang Y-J, Sigward SM. Effects of cut angle and online processing on cutting maneuvers. Paper presented at: American Society of Biomechanics Annual Conference; 2011; Long Beach, CA.

    • Search Google Scholar
    • Export Citation
  • 15.

    Sigward SM, Cesar GM, Havens KL. Predictors of frontal plane knee moments during side-step cutting to 45 and 110 degrees in men and women: implications for anterior cruciate ligament injury. Clin J Sport Med. 2015;25(6):529534. PubMed ID: 25290102 doi:10.1097/JSM.0000000000000155

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Brown TN, Palmieri-Smith RM, McLean SG. Sex and limb differences in hip and knee kinematics and kinetics during anticipated and unanticipated jump landings: implications for anterior cruciate ligament injury. Br J Sports Med. 2009;43(13):10491056. PubMed ID: 19372596 doi:10.1136/bjsm.2008.055954

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Besier TF, Lloyd DG, Ackland TR, Cochrane JL. Anticipatory effects on knee joint loading during running and cutting maneuvers. Med Sci Sports Exerc. 2001;33(7):11761181. PubMed ID: 11445765 doi:10.1097/00005768-200107000-00015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Myklebust G, Maehlum S, Holm I, Bahr R. A prospective cohort study of anterior cruciate ligament injuries in elite Norwegian team handball. Scand J Med Sci Sports. 1998;8(3):149153. PubMed ID: 9659675 doi:10.1111/j.1600-0838.1998.tb00185.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Olsen OE, Myklebust G, Engebretsen L, Bahr R. Injury mechanisms for anterior cruciate ligament injuries in team handball a systematic video analysis. Am J Sport Med. 2004;32(4):10021012. PubMed ID: 15150050 doi:10.1177/0363546503261724

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Bedo BLS, Manechini JPV, Nunomura M, Menezes RP, Silva SRD. Injury frequency in handball players: a descriptive study of injury pattern in São Paulo state regional teams. Motriz. 2019;25(1):e101980. doi:10.1590/s1980-6574201900020020

    • Search Google Scholar
    • Export Citation
  • 21.

    Olsen OE, Myklebust G, Engebretsen L, Bahr R. Injury pattern in youth team handball: a comparison of two prospective registration methods. Scand J Med Sci Sports. 2006;16(6):426432. PubMed ID: 17121645 doi:10.1111/j.1600-0838.2005.00484.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Lee MJC, Lloyd DG, Lay BS, Bourke PD, Alderson JA. Effects of different visual stimuli on postures and knee moments during sidestepping. Med Sci Sport Exerc. 2013;45(9):17401748. PubMed ID: 23481170 doi:10.1249/MSS.0b013e318290c28a

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Almonroeder TG, Garcia E, Kurt M. The effects of anticipation on the mechanics of the knee during single-leg cutting tasks: a systematic review. Int J Sports Phys Ther. 2015;10(7):918928. PubMed ID: 26673276

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Besier TF, Lloyd DG, Ackland TR. Muscle activation strategies at the knee during running and cutting maneuvers. Med Sci Sport Exerc. 2003;35(1):119127. PubMed ID: 12544645 doi:10.1097/00005768-200301000-00019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Moller M, Attermann J, Myklebust G, Wedderkopp N. Injury risk in Danish youth and senior elite handball using a new SMS text messages approach. Br J Sports Med. 2012;46(7):531537. PubMed ID: 22554848 doi:10.1136/bjsports-2012-091022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Langevoort G, Myklebust G, Dvorak J, Junge A. Handball injuries during major international tournaments. Scand J Med Sci Sports. 2007;17(4):400407. PubMed ID: 17038157 doi:10.1111/j.1600-0838.2006.00587.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Cesar GM, Pereira VS, Santiago PR, et al. . Variations in dynamic knee valgus and gluteus medius onset timing in non-athletic females related to hormonal changes during the menstrual cycle. Knee. 2011;18(4):224230. PubMed ID: 20719520 doi:10.1016/j.knee.2010.05.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Zech A, Steib S, Hentschke C, Eckhardt H, Pfeifer K. Effects of localized and general fatigue on static and dynamic postural control in male team handball athletes. J Strength Cond Res. 2012;26(4):11621168. PubMed ID: 22446681 doi:10.1519/JSC.0b013e31822dfbbb

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Cappozzo A, Catani F, Croce UD, Leardini A. Position and orientation in space of bones during movement: anatomical frame definition and determination. Clin Biomech. 1995;10(4):171178. PubMed ID: 11415549 doi:10.1016/0268-0033(95)91394-T

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Spanó NV, Mariano FP, Andrade VLD, Bedo BLDS , Vieira LHP, Santiago PRP. Neuromuscular training effect on knee rotation during drop landing in women. Revista Brasileira de Medicina do Esporte. 2016;22(2), 9296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Wu G, Siegler S, Allard P, et al. . ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. J Biomech. 2002;35(4):543548. PubMed ID: 11934426 doi:10.1016/S0021-9290(01)00222-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Winter DA. Biomechanics and Motor Control of Human Movement. Hoboken, NJ: John Wiley & Sons; 2009.

  • 33.

    Pataky TC, Robinson MA, Vanrenterghem J. Vector field statistical analysis of kinematic and force trajectories. J Biomech. 2013;46(14):23942401. PubMed ID: 23948374 doi:10.1016/j.jbiomech.2013.07.031

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Pataky TC. Generalized n-dimensional biomechanical field analysis using statistical parametric mapping. J Biomech. 2010;43(10):19761982. PubMed ID: 20434726 doi:10.1016/j.jbiomech.2010.03.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Koga H, Nakamae A, Shima Y, et al. . Mechanisms for noncontact anterior cruciate ligament injuries: knee joint kinematics in 10 injury situations from female team handball and basketball. Am J Sports Med. 2010;38(11):22182225. PubMed ID: 20595545 doi:10.1177/0363546510373570

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Laughlin WA, Weinhandl JT, Kernozek TW, Cobb SC, Keenan KG, O’Connor KM. The effects of single-leg landing technique on ACL loading. J Biomech. 2011;44(10):18451851. PubMed ID: 21561623 doi:10.1016/j.jbiomech.2011.04.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Makaruk H, Czaplicki A, Sacewicz T, Sadowski J. The effects of single versus repeated plyometrics on landing biomechanics and jumping performance in men. Biol Sport. 2014;31(1):914. PubMed ID: 24917684 doi:10.5604/20831862.1083273

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Wang LI. The lower extremity biomechanics of single- and double-leg stop-jump tasks. J Sports Sci Med. 2011;10(1):151156. PubMed ID: 24149308

  • 39.

    Uchida TK, Delp SL. Biomechanics of Movement: The Science of Sports, Robotics, and Rehabilitation. Cambridge, MA: The MIT Press; 2020.

  • 40.

    Boden BP, Dean GS, Feagin JA, Garrett WE. Mechanisms of anterior cruciate ligament injury. Orthopedics. 2000;23(6):573578. PubMed ID: 10875418 doi:10.3928/0147-7447-20000601-15

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Fernandes R, Armada-da-Silva P, Pool-Goudzwaard AL, Moniz-Pereira V, Veloso AP. Three dimensional multi-segmental trunk kinematics and kinetics during gait: test-retest reliability and minimal detectable change. Gait Posture. 2016;46:1825. PubMed ID: 27131171 doi:10.1016/j.gaitpost.2016.02.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Hewett TE, Myer GD, Ford KR, et al. . Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492501. PubMed ID: 15722287 doi:10.1177/0363546504269591

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Cortes N, Blount E, Ringleb S, Onate JA. Soccer-specific video simulation for improving movement assessment. Sports Biomech. 2011;10(1):2234. PubMed ID: 21560749 doi:10.1080/14763141.2010.547591

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Kim JH, Lee KK, Kong SJ, An KO, Jeong JH, Lee YS. Effect of anticipation on lower extremity biomechanics during side- and cross-cutting maneuvers in young soccer players. Am J Sports Med. 2014;42(8):19851992. PubMed ID: 24787044 doi:10.1177/0363546514531578

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    McLean SG, Samorezov JE. Fatigue-induced ACL injury risk stems from a degradation in central control. Med Sci Sports Exerc. 2009;41(8):16611672.

  • 46.

    Weinhandl JT, Earl-Boehm JE, Ebersole KT, Huddleston WE, Armstrong BS, Huddleston WE, O'Connor KM. Anticipatory effects on anterior cruciate ligament loading during sidestep cutting. Clin Biomech. 2013;28(6):665-663.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Weir G, van Emmerik R, Jewell C, Hamill J. Coordination and variability during anticipated and unanticipated sidestepping. Gait Posture. 2019;67:18. PubMed ID: 30245239 doi:10.1016/j.gaitpost.2018.09.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Herman DC, Barth JT. Drop-jump landing varies with baseline neurocognition: implications for anterior cruciate ligament injury risk and prevention. Am J Sports Med. 2016;44(9):23472353. PubMed ID: 27474381 doi:10.1177/0363546516657338

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Patla AE, Adkin A, Ballard T. Online steering: coordination and control of body center of mass, head and body reorientation. Exp Brain Res. 1999;129(4):629634. PubMed ID: 10638436 doi:10.1007/s002210050932

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 271 271 70
Full Text Views 141 141 69
PDF Downloads 72 72 42