Lower Limb Movement Pattern Differences Between Males and Females in Squatting and Kneeling

in Journal of Applied Biomechanics
View More View Less
  • 1 University of Waterloo
  • | 2 University of Nebraska Omaha
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $90.00

1 year online subscription

USD  $120.00

Student 2 year online subscription

USD  $172.00

2 year online subscription

USD  $229.00

Movement pattern differences may contribute to differential injury or disease prevalence between individuals. The purpose of this study was to identify lower limb movement patterns in high knee flexion, a risk factor for knee osteoarthritis, and to investigate kinematic differences between males and females, as females typically develop knee osteoarthritis more commonly and severely than males. Lower extremity kinematic data were recorded from 110 participants completing 4 variations of squatting and kneeling. Principal component analysis was used to identify principal movements associated with the largest variability in the sample. Across the tasks, similar principal movements emerged at maximal flexion and during transitions. At maximal flexion, females achieved greater knee flexion, facilitated by a wider base of support, which may alter posterior and lateral tibiofemoral stress. Principal movements also detected differences in movement temporality between males and females. When these temporal differences occur due to alterations in movement velocity and/or acceleration, they may elicit changes in muscle activation and knee joint stress. Movement variability identified in the current study provides a framework for potential modifiable factors in high knee flexion, such as foot position, and suggests that kinematic differences between the sexes may contribute to differences in knee osteoarthritis progression.

All authors are with the Department of Kinesiology, Faculty of Health, University of Waterloo, Waterloo, ON, Canada. Kingston is also with the Department of Biomechanics, University of Nebraska Omaha, NE, USA.

Acker (stacey.acker@uwaterloo.ca) is corresponding author.

Supplementary Materials

    • Supplementary Material 1 (PDF 470 KB)
    • Supplementary Material 2 (zip 632 KB)
    • Supplementary Material 3 (zip 589 KB)
    • Supplementary Material 4 (zip 785 KB)
    • Supplementary Material 5 (zip 1301 KB)
  • 1.

    Felson DT. Osteoarthritis of the knee. N Engl J Med. 2006;354(8):841848. PubMed ID: 16495396 doi:10.1056/NEJMcp051726

  • 2.

    Srikanth VK, Fryer JL, Zhai G, Winzenberg TM, Hosmer D, Jones G. A meta-analysis of sex differences prevalence, incidence and severity of osteoarthritis. Osteoarthr Cartil. 2005;13(9):769781. PubMed ID: 15978850 doi:10.1016/j.joca.2005.04.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Buckwalter JA, Lappin DR. The disproportionate impact of chronic arthralgia and arthritis among women. In: Clinical Orthopaedics and Related Research. Philadelphia, PA: Lippincott Williams and Wilkins; 2000:159168. doi:10.1097/00003086-200003000-00018

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Chin KR, Dalury DF, Zurakowski D, Scott RD. Intraoperative measurements of male and female distal femurs during primary total knee arthroplasty. J Knee Surg. 2002;15(4):213217. PubMed ID: 12416902

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Hitt K, Shurman JR, Greene K, et al. . Anthropometric measurements of the human knee: correlation to the sizing of current knee arthroplasty systems. J Bone Joint Surg Am. 2003;85(4):115122. PubMed ID: 14652402 doi:10.2106/00004623-200300004-00015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Herrington L, Nester C. Q-angle undervalued? The relationship between Q-angle and medio-lateral position of the patella. Clin Biomech. 2004;19(10):10701073. PubMed ID: 15531059 doi:10.1016/j.clinbiomech.2004.07.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Woodland LH, Francis RS. Parameters and comparisons of the quadriceps angle of college-aged men and women in the supine and standing positions. Am J Sports Med. 1992;20(2):208211. PubMed ID: 1558251 doi:10.1177/036354659202000220

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Horton MG, Hall TL. Quadriceps femoris muscle angle: Normal values and relationships with gender and selected skeletal measures. Phys Ther. 1989;69(11):897901. PubMed ID: 2813517 doi:10.1093/ptj/69.11.897

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Hanna FS, Teichtahl AJ, Wluka AE, et al. . Women have increased rates of cartilage loss and progression of cartilage defects at the knee than men: a gender study of adults without clinical knee osteoarthritis. Menopause. 2009;16(4):666670. PubMed ID: 19598333 doi:10.1097/gme.0b013e318198e30e

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    McKean KA, Landry SC, Hubley-Kozey CL, Dunbar MJ, Stanish WD, Deluzio KJ. Gender differences exist in osteoarthritic gait. Clin Biomech. 2007;22(4):400409. PubMed ID: 17239509 doi:10.1016/j.clinbiomech.2006.11.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Krishnan C, Williams GN. Sex differences in quadriceps and hamstrings EMG-moment relationships. Med Sci Sports Exerc. 2009;41(8):16531661. PubMed ID: 19568193 doi:10.1249/MSS.0b013e31819e8e5d

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    White KK, Lee SS, Cutuk A, Hargens AR, Pedowitz RA. EMG power spectra of intercollegiate athletes and anterior cruciate ligament injury risk in females. Med Sci Sports Exerc. 2003;35(3):371376. PubMed ID: 12618565 doi:10.1249/01.MSS.0000053703.65057.31

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Leszko F, Hovinga KR, Lerner AL, Komistek RD, Mahfouz MR. In vivo normal knee kinematics: is ethnicity or gender an influencing factor? Clin Orthop Relat Res. 2011;469(1):95106. PubMed ID: 20814773 doi:10.1007/s11999-010-1517-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Kingston DC, Acker SM. Thigh-calf contact parameters for six high knee flexion postures: onset, maximum angle, total force, contact area, and center of force. J Biomech. 2018;67:4654. PubMed ID: 29248190 doi:10.1016/j.jbiomech.2017.11.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Zeller BL, McCrory JL, Kibler W Ben, Uhl TL, Ben Kibler W, Uhl TL. Differences in kinematics and electromyographic activity between men and women during the single-legged squat. Am J Sports Med. 2003;31(3):449456. PubMed ID: 12750142 doi:10.1177/03635465030310032101

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Hemmerich A, Brown H, Smith S, Marthandam SSK, Wyss UP. Hip, knee, and ankle kinematics of high range of motion activities of daily living. J Orthop Res. 2006;24(4):770781. PubMed ID: 16514664 doi:10.1002/jor.20114

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Jensen LK. Knee osteoarthritis: influence of work involving heavy lifting, kneeling, climbing stairs or ladders, or kneeling/squatting combined with heavy lifting. Occup Environ Med. 2008;65(2):7289. PubMed ID: 17634247 doi:10.1136/oem.2007.032466

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Rytter S, Egund N, Jensen LK, Bonde JP. Occupational kneeling and radiographic tibiofemoral and patellofemoral osteoarthritis. J Occup Med Toxicol. 2009;4(1):19. PubMed ID: 19594940 doi:10.1186/1745-6673-4-19

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Nakagawa S, Kadoya Y, Kobayashi A, et al. . Tibiofemoral movement 3: full flexion in the living knee studied by MRI. J Bone Joint Surg Br. 2000;82(8):11991200. PubMed ID: 11132287 doi:10.1302/0301-620x.82b8.10718.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Chong HC, Tennant LM, Kingston DC, Acker SM. Knee joint moments during high flexion movements: timing of peak moments and the effect of safety footwear. Knee. 2017;24(2):271279. PubMed ID: 28169098 doi:10.1016/j.knee.2016.12.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Acker SM, Cockburn RA, Krevolin J, Li RM, Tarabichi S, Wyss UP. Knee kinematics of high-flexion activities of daily living performed by male Muslims in the middle east. J Arthroplasty. 2011;26(2):319327. PubMed ID: 21036011 doi:10.1016/j.arth.2010.08.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Hefzy MS, Kelly BP, Cooke TDVD. Kinematics of the knee joint in deep flexion: a radiographic assessment. Med Eng Phys. 1998;20(4):302307. PubMed ID: 9728681 doi:10.1016/S1350-4533(98)00024-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Kutzner I, Heinlein B, Graichen F, et al. . Loading of the knee joint during activities of daily living measured in vivo in five subjects. J Biomech. 2010;43(11):21642173. PubMed ID: 20537336 doi:10.1016/j.jbiomech.2010.03.046

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Kobayashi K, Hosseini A, Sakamoto M, Qi W, Rubash HE, Li G. In vivo kinematics of the extensor mechanism of the knee during deep flexion. J Biomech Eng. 2013;135(8):081002. PubMed ID: 23719832 doi:10.1115/1.4024284

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Pejhan S, Chong HC, Tennant LM, Acker SM. A comparison of knee joint moments during high flexion squatting and kneeling postures in healthy individuals. Work. 2020;65(1):7988. PubMed ID: 31868714 doi:10.3233/wor-193060

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Acker SM, Kutzner I, Bergmann G, Deluzio KJ, Wyss UP. In vivo tibiofemoral joint contact forces during high flexion activities. In: Orthopaedic Proceedings, Vol. 94-B, No. SUPP_XXV. Bone and Joint Surgery; 2012:2.

    • Search Google Scholar
    • Export Citation
  • 27.

    Camomilla V, Cereatti A, Vannozzi G, Cappozzo A. An optimized protocol for hip joint centre determination using the functional method. J Biomech. 2006;39(6):10961106. PubMed ID: 16549099 doi:10.1016/j.jbiomech.2005.02.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Longpré HS, Potvin JR, Maly MR. Biomechanical changes at the knee after lower limb fatigue in healthy young women. Clin Biomech. 2013;28(4):441447. PubMed ID: 23528628 doi:10.1016/j.clinbiomech.2013.02.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Winter DA. Biomechanics and Motor Control of Human Movement. 4th ed. New York, NY: Wiley; 2009.

  • 30.

    Schwartz MH, Rozumalski A. A new method for estimating joint parameters from motion data. J Biomech. 2005;38(1):107116. PubMed ID: 15519345 doi:10.1016/j.jbiomech.2004.03.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Ross GB, Dowling B, Troje NF, Fischer SL, Graham RB. Objectively differentiating movement patterns between elite and novice athletes. Med Sci Sports Exerc. 2018;50(7):14571464. PubMed ID: 29420437 doi:10.1249/MSS.0000000000001571

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Gløersen Ø, Myklebust H, Hallén J, Federolf P. Technique analysis in elite athletes using principal component analysis. J Sports Sci. 2017;36(2):229237. PubMed ID: 28287028 doi:10.1080/02640414.2017.1298826

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Witte K, Ganter N, Baumgart C, Peham C. Applying a principal component analysis to movement coordination in sport. Math Comput Model Dyn Syst. 2010;16(5):477488. doi:10.1080/13873954.2010.507079

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Remedios SM, Armstrong DP, Graham RB, Fischer SL. Exploring the application of pattern recognition and machine learning for identifying movement phenotypes during deep squat and hurdle step movements. Front Bioeng Biotechnol. 2020;8:364. PubMed ID: 32426346 doi:10.3389/fbioe.2020.00364

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Brandon SCE, Graham RB, Almosnino S, Sadler EM, Stevenson JM, Deluzio KJ. Interpreting principal components in biomechanics: representative extremes and single component reconstruction. J Electromyogr Kinesiol. 2013;23(6):13041310. PubMed ID: 24209874 doi:10.1016/j.jelekin.2013.09.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Andriacchi TP, Mündermann A, Smith RL, Alexander EJ, Dyrby CO, Koo S. A framework for the in vivo pathomechanics of osteoarthritis at the knee. Ann Biomed Eng. 2004;32(3):447457. PubMed ID: 15095819 doi:10.1023/B:ABME.0000017541.82498.37

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Escamilla RF, Fleisig GS, Lowry TM, Barrentine SW, Andrews JR. A three-dimensional biomechanical analysis of the squat during varying stance widths. Med Sci Sports Exerc. 2001;33(6):984998. PubMed ID: 11404665 doi:10.1097/00005768-200106000-00019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Almosnino S, Kingston D, Graham RB. Three-dimensional knee joint moments during performance of the bodyweight squat: effects of stance width and foot rotation. J Appl Biomech. 2013;29(1):3343. PubMed ID: 23462440 doi:10.1123/jab.29.1.33

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    McCaw ST, Melrose DR. Stance width and bar load effects on leg muscle activity during the parallel squat. Med Sci Sports Exerc. 1999;31(3):428436. PubMed ID: 10188748 doi:10.1097/00005768-199903000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Chen C-T, Bhargava M, Lin PM, Torzilli PA. Time, stress, and location dependent chondrocyte death and collagen damage in cyclically loaded articular cartilage. J Orthop Res. 2003;21(5):888898. PubMed ID: 12919878 doi:10.1016/S0736-0266(03)00050-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Clements KM, Bee ZC, Crossingham G V., Adams MA, Sharif M. How severe must repetitive loading be to kill chondrocytes in articular cartilage? Osteoarthr Cartil. 2001;9(5):499507. PubMed ID: 11467899 doi:10.1053/joca.2000.0417

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Torzilli PA, Grigiene R. Continuous cyclic load reduces proteoglycan release from articular cartilage. Osteoarthritis Cartilage. 1998;6(4):260268. PubMed ID: 9876395 doi:10.1053/joca.1998.0119

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Sauerland K, Raiss RX, Steinmeyer J. Proteoglycan metabolism and viability of articular cartilage explants as modulated by the frequency of intermittent loading. Osteoarthritis Cartilage. 2003;11(5):343350. PubMed ID: 12744940 doi:10.1016/S1063-4584(03)00007-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Bertrand J, Held A. Role of proteoglycans in osteoarthritis. In: Grässel S, Aszódi A, eds. Cartilage: Volume 2: Pathophysiology. Cham, Switzerland: Springer International Publishing; 2017:6380. doi:10.1007/978-3-319-45803-8_4

    • Search Google Scholar
    • Export Citation
  • 45.

    Hunt MA, Birmingham TB, Giffin JR, Jenkyn TR. Associations among knee adduction moment, frontal plane ground reaction force, and lever arm during walking in patients with knee osteoarthritis. J Biomech. 2006;39(12):22132220. PubMed ID: 16168997 doi:10.1016/j.jbiomech.2005.07.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Landry SC, McKean KA, Hubley-Kozey CL, Stanish WD, Deluzio KJ. Knee biomechanics of moderate OA patients measured during gait at a self-selected and fast walking speed. J Biomech. 2007;40(8):17541761. PubMed ID: 17084845 doi:10.1016/j.jbiomech.2006.08.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Astephen JL, Deluzio KJ, Caldwell GE, Dunbar MJ, Hubley-Kozey CL. Gait and neuromuscular pattern changes are associated with differences in knee osteoarthritis severity levels. J Biomech. 2008;41(4):868876. PubMed ID: 18078943 doi:10.1016/j.jbiomech.2007.10.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Johal P, Williams A, Wragg P, Hunt D, Gedroyc W. Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using ‘interventional’ MRI. J Biomech. 2005;38(2):269276. PubMed ID: 15598453 doi:10.1016/j.jbiomech.2004.02.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health. 2009;1(6):461468. PubMed ID: 23015907 doi:10.1177/1941738109350438

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Yao J, Lancianese SL, Hovinga KR, Lee J, Lerner AL. Magnetic resonance image analysis of meniscal translation and tibio-menisco-femoral contact in deep knee flexion. J Orthop Res. 2008;26(5):673684. PubMed ID: 18183628 doi:10.1002/jor.20553

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    McKean MR, Dunn PK, Burkett BJ. The lumbar and sacrum movement pattern during the back squat exercise. J Strength Cond Res. 2010;24(10):27312741. PubMed ID: 20885195 doi:10.1519/JSC.0b013e3181e2e166

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Schoenfeld BJ. Squatting kinematics and kinetics and their application to exercise performance. J Strength Cond Res. 2010;24(12):34973506. PubMed ID: 20182386 doi:10.1519/JSC.0b013e3181bac2d7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Gajdosik RL, Albert CR, Mitman JJ. Influence of hamstring length on the standing position and flexion range of motion of the pelvic angle, lumbar angle, and thoracic angle. J Orthop Sports Phys Ther. 1994;20(4):213219. PubMed ID: 7987382 doi:10.2519/jospt.1994.20.4.213

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Dewberry MJ, Bohannon RW, Tiberio D, Murray R, Zannotti CM. Pelvic and femoral contributions to bilateral hip flexion by subjects suspended from a bar. Clin Biomech. 2003;18(6):494499. PubMed ID: 12828897 doi:10.1016/S0268-0033(03)00096-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Bagwell JJ, Snibbe J, Gerhardt M, Powers CM. Hip kinematics and kinetics in persons with and without cam femoroacetabular impingement during a deep squat task. Clin Biomech. 2016;31:8792. PubMed ID: 26432415 doi:10.1016/j.clinbiomech.2015.09.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Weeks BK, Carty CP, Horan SA. Effect of sex and fatigue on single leg squat kinematics in healthy young adults. BMC Musculoskelet Disord. 2015;16(1):271. PubMed ID: 26423154 doi:10.1186/s12891-015-0739-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Russell KA, Palmieri RM, Zinder SM, Ingersoll CD. Sex differences in valgus knee angle during a single-leg drop jump. J Athl Train. 2006;41(2):166171. PubMed ID: 16791301

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Deluzio KJ, Wyss UP, Zee B, Costigan PA, Serbie C. Principal component models of knee kinematics and kinetics: normal vs. pathological gait patterns. Hum Mov Sci. 1997;16(2–3):201217. doi:10.1016/S0167-9457(96)00051-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 59.

    Wrigley AT, Albert WJ, Deluzio KJ, Stevenson JM. Differentiating lifting technique between those who develop low back pain and those who do not. Clin Biomech. 2005;20(3):254263. PubMed ID: 15698697 doi:10.1016/j.clinbiomech.2004.11.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Deluzio KJ, Astephen JL. Biomechanical features of gait waveform data associated with knee osteoarthritis: an application of principal component analysis. Gait Posture. 2007;25(1):8693. PubMed ID: 16567093 doi:10.1016/j.gaitpost.2006.01.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Sadeghi H, Allard P, Barbier F, et al. . Main functional roles of knee flexors/extensors in able-bodied gait using principal component analysis (I). Knee. 2002;9(1):4753. PubMed ID: 11830381 doi:10.1016/S0968-0160(01)00134-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Donà G, Preatoni E, Cobelli C, Rodano R, Harrison AJ. Application of functional principal component analysis in race walking: an emerging methodology. Sport Biomech. 2009;8(4):284301. PubMed ID: 20169759 doi:10.1080/14763140903414425

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Lee M, Roan M, Smith B. An application of principal component analysis for lower body kinematics between loaded and unloaded walking. J Biomech. 2009;42(14):22262230. PubMed ID: 19674748 doi:10.1016/j.jbiomech.2009.06.052

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Kingston DC, Acker SM. Prediction of thigh-calf contact parameters from anthropometric regression. Proc Inst Mech Eng Part H J Eng Med. 2019;233(4):414423. PubMed ID: 30843468 doi:10.1177/0954411919832037

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 363 363 53
Full Text Views 147 147 8
PDF Downloads 106 106 11