Sensitivity of the Toe Height to Multijoint Angular Changes in the Lower Limbs During Unobstructed and Obstructed Gait

in Journal of Applied Biomechanics
View More View Less
  • 1 Purdue University
  • 2 University of Washington
  • 3 Veterans Affairs Puget Sound Health Care System
  • 4 University of Massachusetts
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Tripping while walking is a main contributor to falls across the adult lifespan. Trip risk is proportional to variability in toe clearance. To determine the sources of this variability, the authors computed for 10 young adults the sensitivity of toe clearance to 10 bilateral lower limb joint angles during unobstructed and obstructed walking when the lead and the trail limb crossed the obstacle. The authors computed a novel measure—singular value of the appropriate Jacobian—as the combined toe clearance sensitivity to 4 groups of angles: all sagittal and all frontal plane angles and all swing and all stance limb angles. Toe clearance was most sensitive to the stance hip ab/adduction for unobstructed gait. For obstructed gait, sensitivity to other joints increased and matched the sensitivity to stance hip ab/adduction. Combined sensitivities revealed critical information that was not evident in the sensitivities to individual angles. The combined sensitivity to stance limb angles was 84% higher than swing limb angles. The combined sensitivity to the sagittal plane angles was lower than the sensitivity to the frontal plane angles during unobstructed gait, and this relation was reversed during obstacle crossing. The results highlight the importance of the stance limb joints and indicate that frontal plane angles should not be ignored.

Cui, Rietdyk, Haddad, and Ambike are with the Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA. Muir is with the Department of Mechanical Engineering, University of Washington, Seattle, WA, USA; and the RR&D Center for Limb Loss and MoBility (CLiMB), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA. van Emmerik is with the Department of Kinesiology, University of Massachusetts, Amherst, MA, USA.

Ambike (sambike@purdue.edu) is corresponding author.
  • 1.

    Berg WP, Alessio HM, Mills EM, Tong C. Circumstances and consequences of falls in independent community-dwelling older adults. Age Ageing. 1997;26(4):261268. PubMed ID: 9271288 doi:10.1093/ageing/26.4.261

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Heijnen MJH, Rietdyk S. Falls in young adults: perceived causes and environmental factors assessed with a daily online survey. Hum Mov Sci. 2016;46:8695. PubMed ID: 26741254 doi:10.1016/j.humov.2015.12.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Begg R, Best R, Dell’Oro L, Taylor S. Minimum foot clearance during walking: strategies for the minimisation of trip-related falls. Gait Posture. 2007;25(2):191198. PubMed ID: 16678418 doi:10.1016/j.gaitpost.2006.03.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Chen H-C, Ashton-Miller JA, Alexander NB, Schultz AB. Stepping over obstacles: gait patterns of healthy young and old adults. J Gerontol. 1991;46(6):M196M203. PubMed ID: 1940078 doi:10.1093/geronj/46.6.M196

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Garman CR, Franck CT, Nussbaum MA, Madigan ML. A bootstrapping method to assess the influence of age, obesity, gender, and gait speed on probability of tripping as a function of obstacle height. J Biomech. 2015;48(6):12291232. PubMed ID: 25683521 doi:10.1016/j.jbiomech.2015.01.031

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Mills PM, Barrett RS, Morrison S. Toe clearance variability during walking in young and elderly men. Gait Posture. 2008;28(1):101107. PubMed ID: 18093833 doi:10.1016/j.gaitpost.2007.10.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Winter DA. Foot trajectory in human gait: a precise and multifactorial motor control task. Phys Ther. 1992;72(1):4553. PubMed ID: 1728048 doi:10.1093/ptj/72.1.45

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Barrett RS, Mills PM, Begg RK. A systematic review of the effect of ageing and falls history on minimum foot clearance characteristics during level walking. Gait Posture. 2010;32(4):429435. PubMed ID: 20692163 doi:10.1016/j.gaitpost.2010.07.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Patla AE, Rietdyk S, Martin C, Prentice S. Locomotor patterns of the leading and the trailing limbs as solid and fragile obstacles are stepped over: some insights into the role of vision during locomotion. J Mot Behav. 1996;28(1):3547. PubMed ID: 12529222 doi:10.1080/00222895.1996.9941731

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Rietdyk S, Rhea CK. The effect of the visual characteristics of obstacles on risk of tripping and gait parameters during locomotion. Ophthalm Physiol Opt. 2011;31(3):302310. PubMed ID: 21470274 doi:10.1111/j.1475-1313.2011.00837.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Chou L-S, Draganich LF. Placing the trailing foot closer to an obstacle reduces flexion of the hip, knee, and ankle to increase the risk of tripping. J Biomech. 1998;31(8):685691. PubMed ID: 9796668 doi:10.1016/S0021-9290(98)00081-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Muir BC, Haddad JM, Heijnen MJH, Rietdyk S. Proactive gait strategies to mitigate risk of obstacle contact are more prevalent with advancing age. Gait Posture. 2015;41(1):233239. PubMed ID: 25455212 doi:10.1016/j.gaitpost.2014.10.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Little VL, McGuirk TE, Patten C. Slower than normal walking speeds involve a pattern shift in joint and temporal coordination contributions. Exp Brain Res. 2019;237(11):29732982. PubMed ID: 31511954 doi:10.1007/s00221-019-05648-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Moosabhoy MA, Gard SA. Methodology for determining the sensitivity of swing leg toe clearance and leg length to swing leg joint angles during gait. Gait Posture. 2006;24(4):493501. PubMed ID: 16439130 doi:10.1016/j.gaitpost.2005.12.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Rodrigues ST, Garcia VD, Forner A. Sensitivity of toe clearance to leg joint angles during extensive practice of obstacle crossing: effects of vision and task goal. J Sport Exer Psych2009:31:S95.

    • Search Google Scholar
    • Export Citation
  • 16.

    Latash ML. The bliss (not the problem) of motor abundance (not redundancy). Exp Brain Res. 2012;217(1):15. PubMed ID: 22246105 doi:10.1007/s00221-012-3000-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Gutierrez GM, Chow JW, Tillman MD, McCoy SC, Castellano V, White LJ. Resistance training improves gait kinematics in persons with multiple sclerosis. Arch Phys Med Rehabil. 2005;86(9):18241829. PubMed ID: 16181949 doi:10.1016/j.apmr.2005.04.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Persch LN, Ugrinowitsch C, Pereira G, Rodacki ALF. Strength training improves fall-related gait kinematics in the elderly: a randomized controlled trial. Clin Biomech. 2009;24(10):819825. PubMed ID: 19716637 doi:10.1016/j.clinbiomech.2009.07.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Cui C, Kulkarni A, Rietdyk S, Barbieri F, Ambike S. Synergies in the ground reaction forces and moments during double support in curb negotiation in young and older adults. J Biomech. 2020;106:109837.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Rosenblatt NJ, Latash ML, Hurt CP, Grabiner MD. Challenging gait leads to stronger lower-limb kinematic synergies: the effects of walking within a more narrow pathway. Neurosci Lett. 2015;600:110114. PubMed ID: 26003449 doi:10.1016/j.neulet.2015.05.039

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Krishnan V, Rosenblatt NJ, Latash ML, Grabiner MD. The effects of age on stabilization of the mediolateral trajectory of the swing foot. Gait Posture. 2013;38(4):923928. PubMed ID: 23711985 doi:10.1016/j.gaitpost.2013.04.023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Rosenblatt NJ, Hurt CP, Latash ML, Grabiner MD. An apparent contradiction: increasing variability to achieve greater precision? Exp Brain Res. 2014;232(2):403413. PubMed ID: 24162866 doi:10.1007/s00221-013-3748-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Robert T, Bennett BC, Russell SD, Zirker CA, Abel MF. Angular momentum synergies during walking. Exp Brain Res. 2009;197(2):185197. PubMed ID: 19578841 doi:10.1007/s00221-009-1904-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Wu J, McKay S, Angulo-Barroso R. Center of mass control and multi-segment coordination in children during quiet stance. Exp Brain Res. 2009;196(3):329339. PubMed ID: 19484228 doi:10.1007/s00221-009-1852-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Scholz JP, Schöner G. The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res. 1999;126(3):289306. PubMed ID: 10382616 doi:10.1007/s002210050738

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Tillman M, Ambike S. Cue-Induced changes in the stability of finger force-production tasks revealed by the uncontrolled manifold analysis. J Neurophysiol. 2018;119(1):2132. PubMed ID: 28931612 doi:10.1152/jn.00519.2017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Dobkin BH. Strategies for stroke rehabilitation. Lancet Neurol. 2004;3(9):528536. PubMed ID: 15324721 doi:10.1016/S1474-4422(04)00851-8

  • 28.

    Marchal-Crespo L, Reinkensmeyer DJ. Review of control strategies for robotic movement training after neurologic injury. J NeuroEng Rehabil. 2009;6(1):20. doi:10.1186/1743-0003-6-20

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Muir BC, Haddad JM, van Emmerik REA, Rietdyk S. Changes in the control of obstacle crossing in middle age become evident as gait task difficulty increases. Gait Posture. 2019;70:254259. PubMed ID: 30909004 doi:10.1016/j.gaitpost.2019.01.035

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Heijnen MJH, Romine NL, Stumpf DM, Rietdyk S. Memory-Guided obstacle crossing: more failures were observed for the trail limb versus lead limb. Exp Brain Res. 2014;232(7):21312142. PubMed ID: 24838551 doi:10.1007/s00221-014-3903-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Remelius JG, Hamill J, van Emmerik REA. Prospective dynamic balance control during the swing phase of walking: stability boundaries and time-to-contact analysis. Hum Mov Sci. 2014;36:227245. PubMed ID: 24856189 doi:10.1016/j.humov.2014.04.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Heijnen MJH, Muir BC, Rietdyk S. Factors leading to obstacle contact during adaptive locomotion. Exp Brain Res. 2012;223(2):219231. PubMed ID: 22972450 doi:10.1007/s00221-012-3253-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Loverro KL, Mueske NM, Hamel KA. Location of minimum foot clearance on the shoe and with respect to the obstacle changes with locomotor task. J Biomech. 2013;46(11):18421850. PubMed ID: 23747230 doi:10.1016/j.jbiomech.2013.05.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Strang G. Linear Algebra and Its Applications (3rd ed). 1988; San Diego: Hartcourt Brace Jovanovich. 1988.

  • 35.

    Angeles J, Park FC. Design and Performance Evaluation. In: Siciliano B, Khatib O, eds. Springer Handbook of Robotics. Springer, Cham: Springer Handbooks; 2016:399418. doi:10.1007/978-3-319-32552-1_16

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Patla A, Rietdyk S. Visual control of limb trajectory over obstacles during locomotion: effect of obstacle height and width. Gait Posture. 1993;1(1):4560. doi:10.1016/0966-6362(93)90042-Y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Lu T-W, Chen H-L, Chen S-C. Comparisons of the lower limb kinematics between young and older adults when crossing obstacles of different heights. Gait Posture. 2006;23(4):471479. PubMed ID: 16023346 doi:10.1016/j.gaitpost.2005.06.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Berard JR, Vallis LA. Characteristics of single and double obstacle avoidance strategies: a comparison between adults and children. Exp Brain Res. 2006;175(1):2131. PubMed ID: 16761138 doi:10.1007/s00221-006-0529-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Mohagheghi AA, Moraes R, Patla AE. The effects of distant and on-line visual information on the control of approach phase and step over an obstacle during locomotion. Exp Brain Res. 2004;155(4):459468. PubMed ID: 14770275 doi:10.1007/s00221-003-1751-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Rhea CK, Rietdyk S. Visual exteroceptive information provided during obstacle crossing did not modify the lower limb trajectory. Neurosci Lett. 2007;418(1):6065. PubMed ID: 17382468 doi:10.1016/j.neulet.2007.02.063

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Muir BC, Bodratti LA, Morris CE, Haddad JM, van Emmerik REA, Rietdyk S. Gait characteristics during inadvertent obstacle contacts in young, middle-aged and older adults. Gait Posture. 2020;77:100104. PubMed ID: 32006717 doi:10.1016/j.gaitpost.2020.01.020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Rosenblatt NJ, Bauer A, Grabiner MD. Relating minimum toe clearance to prospective, self-reported, trip-related stumbles in the community. Prosthet Orthot Int. 2017;41(4):387392. PubMed ID: 27280640 doi:10.1177/0309364616650085

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Chiu S-L, Chang C-C, Dennerlein JT, Xu X. Age-related differences in inter-joint coordination during stair walking transitions. Gait Posture. 2015;42(2):152157. PubMed ID: 26043669 doi:10.1016/j.gaitpost.2015.05.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Chiu S-L, Chou L-S. Variability in inter-joint coordination during walking of elderly adults and its association with clinical balance measures. Clin Biomech. 2013;28(4):454458. PubMed ID: 23538128 doi:10.1016/j.clinbiomech.2013.03.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Jiang Y, Hayashi I, Wang S. Knowledge acquisition method based on singular value decomposition for human motion analysis. IEEE Trans Knowl Data Eng. 2014;26(12):30383050. doi:10.1109/TKDE.2014.2316521

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Singh T, Ambike S. A soft-contact and wrench based approach to study grasp planning and execution. J Biomech. 2015;48(14):39613967. PubMed ID: 26475219 doi:10.1016/j.jbiomech.2015.09.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Eng JJ, Winter DA, Patla AE. Strategies for recovery from a trip in early and late swing during human walking. Exp Brain Res. 1994;102(2):339349. PubMed ID: 7705511 doi:10.1007/BF00227520

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Pijnappels M, Bobbert MF, van Dieën JH. Control of support limb muscles in recovery after tripping in young and older subjects. Exp Brain Res. 2005;160(3):326333. PubMed ID: 15322782 doi:10.1007/s00221-004-2014-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Timsina LR, Willetts JL, Brennan MJ, et al. Circumstances of fall-related injuries by age and gender among community-dwelling adults in the United States. PLoS One. 2017;12(5):e0176561. PubMed ID: 28472065 doi:10.1371/journal.pone.0176561

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Verma SK, Willetts JL, Corns HL, Marucci-Wellman HR, Lombardi DA, Courtney TK. Falls and fall-related injuries among community-dwelling adults in the United States. PLoS One. 2016;11(3):e0150939. PubMed ID: 26977599 doi:10.1371/journal.pone.0150939

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 80 80 71
Full Text Views 15 15 14
PDF Downloads 15 15 14