Tibiofemoral Contact Measures During Standing in Toe-In and Toe-Out Postures

Click name to view affiliation

Michael A. Hunt The University of British Columbia

Search for other papers by Michael A. Hunt in
Current site
Google Scholar
PubMed
Close
*
,
Christopher K. Cochrane The University of British Columbia

Search for other papers by Christopher K. Cochrane in
Current site
Google Scholar
PubMed
Close
*
,
Andrew M. Schmidt The University of British Columbia

Search for other papers by Andrew M. Schmidt in
Current site
Google Scholar
PubMed
Close
*
,
Honglin Zhang The University of British Columbia

Search for other papers by Honglin Zhang in
Current site
Google Scholar
PubMed
Close
*
,
David J. Stockton The University of British Columbia

Search for other papers by David J. Stockton in
Current site
Google Scholar
PubMed
Close
*
,
Alec H. Black The University of British Columbia
BC Children’s Hospital

Search for other papers by Alec H. Black in
Current site
Google Scholar
PubMed
Close
*
, and
David R. Wilson The University of British Columbia

Search for other papers by David R. Wilson in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Knee osteoarthritis is thought to result, in part, from excessive and unbalanced joint loading. Toe-in and toe-out gait modifications produce alterations in external knee joint moments, and some improvements in pain over the short- and long-term. The aim of this study was to probe mechanisms of altered joint loading through the assessment of tibiofemoral contact in standing with toe-in and toe-out positions using an open magnetic resonance scanner. In this study, 15 young, healthy participants underwent standing magnetic resonance imaging of one of their knees in 3 foot positions. Images were analyzed to determine contact in the tibiofemoral joint, with primary outcomes including centroid of contact and contact area for each compartment and overall. The centroid of contact shifted laterally in the lateral compartment with both toe-in and toe-out postures, compared with the neutral position (P < .01), while contact area in the medial and lateral compartments showed no statistical differences. Findings from this study indicate that changes in the loading anatomy are present in the tibiofemoral joint with toe-in and toe-out and that a small amount of lateralization of contact, especially in the lateral compartment, does occur with these altered lower limb orientations.

Hunt is with the Department of Physical Therapy, The University of British Columbia, Vancouver, BC, Canada. Hunt and Cochrane are with the Motion Analysis and Biofeedback Laboratory, The University of British Columbia, Vancouver, BC, Canada. Cochrane is also with the Graduate Programs in Rehabilitation Sciences, The University of British Columbia, Vancouver, BC, Canada. Hunt, Schmidt, Zhang, Stockton, and Wilson are with the Centre for Hip Health and Mobility, The University of British Columbia, Vancouver, BC, Canada. Black is with the Motion Lab at BC Children's Hospital, Vancouver, BC, Canada. Wilson and Black are also with the Department of Orthopedics, The University of British Columbia, Vancouver, BC, Canada.

Hunt (michael.hunt@ubc.ca) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Cross M, Smith E, Hoy D, et al. The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. Ann Rheum Dis. 2014;73(7):13231330. PubMed ID: 24553908 doi:10.1136/annrheumdis-2013-204763

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Bombardier C, Hawker G, Mosher D. The Impact of Arthritis in Canada: Today and Over the Next 30 Years. Toronto, Canada: Arthritis Alliance of Canada; 2011.

    • Search Google Scholar
    • Export Citation
  • 3.

    Bennell KL, Bowles KA, Wang Y, Cicuttini F, Davies-Tuck M, Hinman RS. Higher dynamic medial knee load predicts greater cartilage loss over 12 months in medial knee osteoarthritis. Ann Rheum Dis. 2011;70(10):17701774. PubMed ID: 21742637 doi:10.1136/ard.2010.147082

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Chang AH, Moisio KC, Chmiel JS, et al. External knee adduction and flexion moments during gait and medial tibiofemoral disease progression in knee osteoarthritis. Osteoarthritis Cartilage. 2015;23(7):10991106. PubMed ID: 25677110 doi:10.1016/j.joca.2015.02.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Miyazaki T, Wada M, Kawahara H, Sato M, Baba H, Shimada S. Dynamic load at baseline can predict radiographic disease progression in medial compartment knee osteoarthritis. Ann Rheum Dis. 2002;61(7):617622. PubMed ID: 12079903 doi:10.1136/ard.61.7.617

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Reeves ND, Bowling FL. Conservative biomechanical strategies for knee osteoarthritis. Nat Rev Rheumatol. 2011;7(2):113122. PubMed ID: 21289615 doi:10.1038/nrrheum.2010.212

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Simic M, Hinman RS, Wrigley TV, Bennell KL, Hunt MA. Gait modification strategies for altering medial knee joint load: a systematic review. Arthrit Care Res. 2011;63(3):405426. PubMed ID: 20981808 doi:10.1002/acr.20380

    • Search Google Scholar
    • Export Citation
  • 8.

    Shull PB, Shultz R, Silder A, et al. Toe-in gait reduces the first peak knee adduction moment in patients with medial compartment knee osteoarthritis. J Biomech. 2013;46(1):122128. PubMed ID: 23146322 doi:10.1016/j.jbiomech.2012.10.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Simic M, Wrigley TV, Hinman RS, Hunt MA, Bennell KL. Altering foot progression angle in people with medial knee osteoarthritis: the effects of varying toe-in and toe-out angles are mediated by pain and malalignment. Osteoarthritis Cartilage. 2013;21(9):12721280. PubMed ID: 23973141 doi:10.1016/j.joca.2013.06.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Lynn SK, Kajaks T, Costigan PA. The effect of internal and external foot rotation on the adduction moment and lateral-medial shear force at the knee during gait. J Sci Med Sport. 2008;11(5):444451. PubMed ID: 17768089 doi:10.1016/j.jsams.2007.03.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Hunt MA, Takacs J. Effects of a 10-week toe-out gait modification intervention in people with medial knee osteoarthritis: a pilot, feasibility study. Osteoarthritis Cartilage. 2014;22(7):904911. PubMed ID: 24836210 doi:10.1016/j.joca.2014.04.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Schipplein OD, Andriacchi TP. Interaction between active and passive knee stabilizers during level walking. J Orthop Res. 1991;9(1):113119. PubMed ID: 1984041 doi:10.1002/jor.1100090114

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Zhao D, Banks S, Mitchell K, D’Lima D, Colwell C, Fregly B. Correlation between the knee adduction torque and medial contact force for a variety of gait patterns. J Orthop Res. 2007;25(6):789797. PubMed ID: 17343285 doi:10.1002/jor.20379

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Shull PB, Silder A, Shultz R, et al. Six-week gait retraining program reduces knee adduction moment, reduces pain, and improves function for individuals with medial compartment knee osteoarthritis. J Orthop Res. 2013;31(7):10201025. PubMed ID: 23494804 doi:10.1002/jor.22340

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Hunt MA, Charlton JM, Krowchuk NM, Tse CTF, Hatfield GL. Clinical and biomechanical changes following a 4-month toe-out gait modification program for people with medial knee osteoarthritis: a randomized controlled trial. Osteoarthritis Cartilage. 2018;26(7):903911. PubMed ID: 29709498 doi:10.1016/j.joca.2018.04.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Cheung RTH, Ho KKW, Au IPH, et al. Immediate and short-term effects of gait retraining on the knee joint moments and symptoms in patients with early tibiofemoral joint osteoarthritis: a randomized controlled trial. Osteoarthritis Cartilage. 2018;26(11):14791486. PubMed ID: 30081075 doi:10.1016/j.joca.2018.07.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Kutzner I, Trepczynski A, Heller MO, Bergmann G. Knee adduction moment and medial contact force—facts about their correlation during gait. PLoS One. 2013;8(12):e81036. PubMed ID: 24312522 doi:10.1371/journal.pone.0081036

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Mündermann A, Dyrby CO, D’Lima DD, Colwell CW, Andriacchi TP. In vivo knee loading characteristics during activities of daily living as measured by an instrumented total knee replacement. J Orthop Res. 2008;26(9):11671172. PubMed ID: 18404700 doi:10.1002/jor.20655

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Fregly BJ, D’Lima DD, Colwell CW Jr. Effective gait patterns for offloading the medial compartment of the knee. J Orthop Res. 2009;27(8):1016. PubMed ID: 19148939 doi:10.1002/jor.20843

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Trepczynski A, Kutzner I, Bergmann G, Taylor WR, Heller MO. Modulation of the relationship between external knee adduction moments and medial joint contact forces across subjects and activities. Arthrit Rheumatol. 2014;66(5):12181227. PubMed ID: 24470261 doi:10.1002/art.38374

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    D’Lima DD, Patil S, Steklov N, Slamin JE, Colwell CW. Tibial forces measured in vivo after total knee arthroplasty. J Arthroplasty. 2006;21(2):255262. PubMed ID: 16520216 doi:10.1016/j.arth.2005.07.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Walter JP, D’Lima DD, Colwell CW, Fregly BJ. Decreased knee adduction moment does not guarantee decreased medial contact force during gait. J Orthop Res. 2010;28(10):13481354. PubMed ID: 20839320 doi:10.1002/jor.21142

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Yazdi H, Mallakzadeh M, Farshidfar SS, Givehchian B, Daneshparvar H, Behensky H. Hannes Behensky. The effect of tibial rotation on knee medial and lateral compartment contact pressure. Knee Surg Sports Traumatol Arthrosc. 2016;24,:7983. doi:10.1007/s00167-014-3321-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Guo M, Axe MJ, Manal K. The influence of foot progression angle on the knee adduction moment during walking and stair climbing in pain free individuals with knee osteoarthritis. Gait Posture. 2007;26(3):436441. PubMed ID: 17134902 doi:10.1016/j.gaitpost.2006.10.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175191. PubMed ID: 17695343 doi:10.3758/BF03193146

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Henderson CE, Higginson JS, Barrance PJ. Comparison of MRI-based estimates of articular cartilage contact area in the tibiofemoral joint. J Biomech Eng. 2011;133(1):014502. doi:10.1115/1.4002938

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    McWalter EJ, O’Kane CM, Fitzpatrick DP, Wilson DR. Validation of an MRI-based method to assess patellofemoral joint contact areas in loaded knee flexion in vivo. J Magn Reson Imaging. 2014;39(4):978987. PubMed ID: 24006182 doi:10.1002/jmri.24240

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Cohen ZA, McCarthy DM, Kwak SD, et al. Knee cartilage topography, thickness, and contact areas from MRI: in-vitro calibration and in-vivo measurements. Osteoarthritis Cartilage. 1999;7(1):95109. PubMed ID: 10367018 doi:10.1053/joca.1998.0165

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Fedorov A, Beichel R, Kalpathy-Cramer J, et al. 3D slicer as an image computing platform for the quantitative imaging network. J Magn Reson Imaging. 2012;30(9):13231341. PubMed ID: 22770690 doi:10.1016/j.mri.2012.05.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Schmidt AM, Stockton DJ, Hunt MA, Yung A, Masri BA, Wilson DR. Reliability of tibiofemoral contact area and centroid location in upright, open MRI. BMC Musculoskeletal Disord. 2020;21(1):795. PubMed ID: 33256691 doi:10.1186/s12891-020-03786-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Grood ES, Suntay WJ. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng. 1983;105(2):136144. PubMed ID: 6865355 doi:10.1115/1.3138397

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Jenkyn TR, Hunt MA, Jones IC, Giffin JR, Birmingham TB. Toe-out gait in patients with knee osteoarthritis partially transforms external knee adduction moment into flexion moment during early stance phase of gait: a tri-planar kinetic mechanism. J Biomech. 2008;41(2):276283. PubMed ID: 18061197 doi:10.1016/j.jbiomech.2007.09.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Koblauch H, Heilskov-Hansen T, Alkjor T, Simonsen EB, Henriksen M. The effect of foot progression angle on knee joint compression force during walking. J Appl Biomech. 2013;29(3):329335. PubMed ID: 22923424 doi:10.1123/jab.29.3.329

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Chang A, Hurwitz D, Dunlop D, et al. The relationship between toe-out angle during gait and progression of medial tibiofemoral osteoarthritis. Ann Rheum Dis. 2007;66(10):12711275. PubMed: 17267516 doi:10.1136/ard.2006.062927

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Shelburne K, Torry M, Pandy M. Contributions of muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading during normal gait. J Orthop Res. 2006;24(10):19831990. PubMed ID: 16900540 doi:10.1002/jor.20255

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Shin CS, Souza RB, Kumar D, Link TM, Wyman BT, Majumdar S. In vivo tibiofemoral cartilage-to-cartilage contact area of females with medial osteoarthritis under acute loading using MRI. J Magn Reson Imaging. 2011;34(6):14051413. PubMed ID: 21953771 doi:10.1002/jmri.22796

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Brand RA. Joint contact stress: a reasonable surrogate for biological processes? Iowa Orthop J. 2005;25:8294. PubMed ID: 16089079

  • 38.

    Maly MR. Abnormal and cumulative loading in knee osteoarthritis. Curr Opin Rheu. 2008;20(5):547552. PubMed ID: 18698176 doi:10.1097/BOR.0b013e328307f58c

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1894 519 24
Full Text Views 179 31 1
PDF Downloads 111 7 1