Exposure to Sustained Flexion Impacts Lumbar Extensor Spinae Muscle Fiber Orientation

Click name to view affiliation

Brendan L. Pinto University of Waterloo

Search for other papers by Brendan L. Pinto in
Current site
Google Scholar
PubMed
Close
*
,
Daniel Viggiani University of Waterloo

Search for other papers by Daniel Viggiani in
Current site
Google Scholar
PubMed
Close
*
, and
Jack P. Callaghan University of Waterloo

Search for other papers by Jack P. Callaghan in
Current site
Google Scholar
PubMed
Close
*
Restricted access

The lumbar extensor spinae (LES) has an oblique orientation with respect to the compressive axis of the lumbar spine, allowing it to counteract anterior shear forces. This mechanical advantage is lost as spine flexion angle increases. The LES orientation can also alter over time as obliquity decreases with age and is associated with decreased strength and low back pain. However, it is unknown if LES orientation is impacted by recent exposures causing adaptations over shorter timescales. Hence, the effects of a 10-minute sustained spine flexion exposure on LES orientation, thickness, and activity were investigated. Three different submaximally flexed spine postures were observed before and after the exposure. At baseline, orientation (P < .001) and thickness (P = .004) decreased with increasingly flexed postures. After the exposure, obliquity further decreased at low (pairwise comparison P < .001) and moderately (pairwise comparison P = .008) flexed postures. Low back creep occurred, but LES thickness did not change, indicating that decreases in orientation were not solely due to changes in muscle length at a given posture. Activation did not change to counteract decreases in obliquity. These changes encompass a reduced ability to offset anterior shear forces, thus increasing the potential risk of anterior shear-related injury or pain after low back creep-generating exposures.

The authors are with the Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada.

Callaghan (jack.callaghan@uwaterloo.ca) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Macintosh JE, Bogduk N. 1987 Volvo award in basic science. The morphology of the lumbar erector spinae. Spine. 1987;12(7):658668. PubMed ID: 3686217 doi:10.1097/00007632-198709000-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Cuesta-Vargas A, González-Sánchez M. Correlation between architectural variables and torque in the erector spinae muscle during maximal isometric contraction. J Sports Sci. 2014;32(19):17971804. PubMed ID: 24903060 doi:10.1080/02640414.2014.924054

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Steele J, Bruce-Low S, Smith D. A reappraisal of the deconditioning hypothesis in low back pain: review of evidence from a triumvirate of research methods on specific lumbar extensor deconditioning. Curr Med Res Opin. 2014;30(5):865911. PubMed ID: 24328452 doi:10.1185/03007995.2013.875465

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Steele J, Fisher J, Perrin C, Conway R, Bruce-Low S, Smith D. Does change in isolated lumbar extensor muscle function correlate with good clinical outcome? A secondary analysis of data on change in isolated lumbar extension strength, pain, and disability in chronic low back pain. Disabil Rehabil. 2019;41(11):12871295. PubMed ID: 29327605 doi:10.1080/09638288.2018.1424952

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Potvin JR, Norman RW, McGill SM. Reduction in anterior shear forces on the L4L5 disc by the lumbar musculature. Clin Biomech. 1991;6(2):8896. PubMed ID: 23915481 doi:10.1016/0268-0033(91)90005-B

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    McGill SM, Hughson RL, Parks K. Changes in lumbar lordosis modify the role of the extensor muscles. Clin Biomech. 2000;15(10):777780. PubMed ID: 11050362 doi:10.1016/S0268-0033(00)00037-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Singh DK, Bailey M, Lee RY. Ageing modifies the fibre angle and biomechanical function of the lumbar extensor muscles. Clin Biomech. 2011;26(6):543547. PubMed ID: 21392870 doi:10.1016/j.clinbiomech.2011.02.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Harriss AB, Brown SH. Effects of changes in muscle activation level and spine and hip posture on erector spinae fiber orientation. Muscle Nerve. 2015;51(3):426433. PubMed ID: 24910343 doi:10.1002/mus.24309

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Maganaris CN, Baltzopoulos V, Sargeant AJ. Repeated contractions alter the geometry of human skeletal muscle. J App Phys. 2002;93(6):20892094. PubMed ID: 12391038 doi:10.1152/japplphysiol.00604.2002

    • Search Google Scholar
    • Export Citation
  • 10.

    Avela J, Kyrolainen H, Komi PV. Altered reflex sensitivity after repeated and prolonged passive muscle stretching. J App Phys (1985). 1999;86(4):12831291. PubMed ID: 10194214 doi:10.1152/jappl.1999.86.4.1283

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Solomonow M, Zhou BH, Baratta RV, Lu Y, Harris M. Biomechanics of increased exposure to lumbar injury caused by cyclic loading: part 1. Loss of reflexive muscular stabilization. Spine. 1999;24(23):24262434. PubMed ID: 10626304 doi:10.1097/00007632-199912010-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Song Z, Banks RW, Bewick GS. Modelling the mechanoreceptor’s dynamic behaviour. J Anat. 2015;227(2):243254. PubMed ID: 26110655 doi:10.1111/joa.12328

  • 13.

    Rogers EL, Granata KP. Disturbed paraspinal reflex following prolonged flexion-relaxation and recovery. Spine. 2006;31(7):839845. PubMed ID: 16582860 doi:10.1097/01.brs.0000206361.53451.c7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Sánchez-Zuriaga D, Adams MA, Dolan P. Is activation of the back muscles impaired by creep or muscle fatigue? Spine. 2010; 35(5), 517525. PubMed ID: 20147877 doi:10.1097/BRS.0b013e3181b967ea

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Howarth SJ, Glisic D, Lee JG, Beach TA. Does prolonged seated deskwork alter the lumbar flexion relaxation phenomenon? J Electromyogr Kinesiol. 2013;23(3):587593. PubMed ID: 23380695 doi:10.1016/j.jelekin.2013.01.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    McGill SM, Brown S. Creep response of the lumbar spine to prolonged full flexion. Clin Biomech. 1992;7(1):4346. PubMed ID: 23915616 doi:10.1016/0268-0033(92)90007-Q

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Brereton LC, McGill SM. Frequency response of spine extensors during rapid isometric contractions: effects of muscle length and tension. J Electromyogr Kinesiol. 1998;8(4):227232. PubMed ID: 9779396 doi:10.1016/S1050-6411(98)00009-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol. 2013;4:863. PubMed ID: 24324449 doi:10.3389/fpsyg.2013.00863

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Weir JP. Quantifying test–retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005;19(1):231240. PubMed ID: 15705040 doi:10.1519/15184.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86(2):420428. PubMed ID: 18839484 doi:10.1037/0033-2909.86.2.420

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Jorgensen M, Marras W, Gupta P. Cross-sectional area of the lumbar back muscles as a function of torso flexion. Clin Biomech. 2003;18(4):280286. PubMed ID: 12689777 doi:10.1016/S0268-0033(03)00027-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Watanabe K, Miyamoto K, Masuda T. Use of ultrasonography to evaluate thickness of the erector spinae muscle in maximum flexion and extension of the lumbar spine. Spine. 2004;29(13):14721477. PubMed ID: 15223941 doi:10.1097/01.BRS.0000128755.84693.10

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Thornton GM, Shrive NG, Frank CB. Ligament creep recruits fibres at low stresses and can lead to modulus-reducing fibre damage at higher creep stresses: a study in rabbit medial collateral ligament model. J Orthop Res. 2002;20(5):967974. PubMed ID: 12382961 doi:10.1016/S0736-0266(02)00028-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Granata KP, Rogers E, Moorhouse K. Effects of static flexion–relaxation on paraspinal reflex behavior. Clin Biomech. 2005;20(1):1624. PubMed ID: 15567532 doi:10.1016/j.clinbiomech.2004.09.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Solomonow M, Baratta RV, Zhou BH, Burger E, Zieske A, Gedalia A. Muscular dysfunction elicited by creep of lumbar viscoelastic tissue. J Electromyogr Kinesiol. 2003;13(4):381396. PubMed ID: 12832168 doi:10.1016/S1050-6411(03)00045-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Shin G, Mirka GA. An in vivo assessment of the low back response to prolonged flexion: interplay between active and passive tissues. Clin Biomech. 2007;22(9):965971. PubMed ID: 17709161 doi:10.1016/j.clinbiomech.2007.06.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Abboud J, Nougarou F, Descarreaux M. Muscle activity adaptations to spinal tissue creep in the presence of muscle fatigue. PLoS One. 2016;11(2):e0149076. PubMed ID: 26866911 doi:10.1371/journal.pone.0149076

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Bazrgari B, Hendershot B, Muslim K, Toosizadeh N, Nussbaum MA, Madigan ML. Disturbance and recovery of trunk mechanical and neuromuscular behaviours following prolonged trunk flexion: influences of duration and external load on creep-induced effects. Ergonomics. 2011;54(11):10431052. PubMed ID: 22026947 doi:10.1080/00140139.2011.614357

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Howarth SJ, Beach TA, Pearson AJ, Callaghan JP. Using sitting as a component of job rotation strategies: are lifting/lowering kinetics and kinematics altered following prolonged sitting. Appl Ergon. 2009;40(3):433439. PubMed ID: 19081557 doi:10.1016/j.apergo.2008.10.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Gallagher S, Marras WS. Tolerance of the lumbar spine to shear: a review and recommended exposure limits. Clin Biomech. 2012;27(10):973978. PubMed ID: 22967740 doi:10.1016/j.clinbiomech.2012.08.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Howarth SJ, Callaghan JP. Compressive force magnitude and intervertebral joint flexion/extension angle influence shear failure force magnitude in the porcine cervical spine. J Biomech. 2012;45(3):484490. PubMed ID: 22196209 doi:10.1016/j.jbiomech.2011.11.051

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Solomonow M, Zhou BH, Baratta RV, Burger E. Biomechanics and electromyography of a cumulative lumbar disorder: response to static flexion. Clin Biomech. 2003;18(10):890898. PubMed ID: 14580832 doi:10.1016/S0268-0033(03)00173-6

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1506 473 4
Full Text Views 337 24 1
PDF Downloads 175 16 0