Leg Joint Mechanics When Hopping at Different Frequencies

Click name to view affiliation

Mu Qiao Louisiana Tech University

Search for other papers by Mu Qiao in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Although the dynamics of center of mass can be accounted for by a spring-mass model during hopping, less is known about how each leg joint (ie, hip, knee, and ankle) contributes to center of mass dynamics. This work investigated the function of individual leg joints when hopping unilaterally and vertically at 4 frequencies (ie, 1.6, 2.0, 2.4, and 2.8 Hz). The hypotheses are (1) all leg joints maintain the function as torsional springs and increase their stiffness when hopping faster and (2) leg joints are controlled to maintain the mechanical load in the joints or vertical peak accelerations at different body locations when hopping at different frequencies. Results showed that all leg joints behaved as torsional springs during low-frequency hopping (ie, 1.6 Hz). As hopping frequency increased, leg joints changed their functions differently; that is, the hip and knee shifted to strut, and the ankle remained as spring. When hopping fast, the body’s total mechanical energy decreased, and the ankle increased the amount of energy storage and return from 50% to 62%. Leg joints did not maintain a constant load at the joints or vertical peak accelerations at different body locations when hopping at different frequencies.

Qiao (mqiao@latech.edu) is with the Department of Kinesiology, Louisiana Tech University, Ruston, LA, USA.

Supplementary Materials

    • Supplemental Materials (PDF 240 KB)
  • Collapse
  • Expand
  • 1.

    Holmes P, Full RJ, Koditschek D, Guckenheimer J. The dynamics of legged locomotion: models, analyses, and challenges. SIAM Rev. 2006;48(2):207304. doi:10.1137/S0036144504445133

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Farley CT, Houdijk HH, Van Strien C, Louie M. Mechanism of leg stiffness adjustment for hopping on surfaces of different stiffnesses. J Appl Physiol. 1998;85(3):10441055. PubMed ID: 9729582 doi:10.1152/jappl.1998.85.3.1044

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Farley CT, Morgenroth DC. Leg stiffness primarily depends on ankle stiffness during human hopping. J Biomech. 1999;32(3):267273. PubMed ID: 10093026 doi:10.1016/S0021-9290(98)00170-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Yoshida M, Aoki N, Taniguchi K, Yoshida M, Katayose M. Kinematic analysis of the ankle joint on the side-hop test in subjects with ankle sprains. Transl Sports Med. 2018;1(6):265272. doi:10.1002/tsm2.44

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Kockum B, Heijne AI. Hop performance and leg muscle power in athletes: reliability of a test battery. Phys Ther Sport. 2015;16(3):222227. PubMed ID: 25891995 doi:10.1016/j.ptsp.2014.09.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Rudolph KS, Axe MJ, Snyder-Mackler L. Dynamic stability after ACL injury: who can hop? Knee Surg Sports Traumat Arthrosc. 2000;8(5):262269. PubMed ID: 11061293 doi:10.1007/s001670000130

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Yen JT, Auyang AG, Chang YH. Joint-level kinetic redundancy is exploited to control limb-level forces during human hopping. Exp Brain Res. 2009;196(3):439451. PubMed ID: 19495732 doi:10.1007/s00221-009-1868-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Auyang AG, Yen JT, Chang YH. Neuromechanical stabilization of leg length and orientation through interjoint compensation during human hopping. Exp Brain Res. 2009;192(2):253264. PubMed ID: 18839158 doi:10.1007/s00221-008-1582-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Blickhan R. The spring-mass model for running and hopping. J Biomech. 1989;22(11–12):12171227. PubMed ID: 2625422 doi:10.1016/0021-9290(89)90224-8

  • 10.

    Cavagna GA, Kaneko M. Mechanical work and efficiency in level walking and running. J Physiol. 1977;268(2):467481. PubMed ID: 874922 doi:10.1113/jphysiol.1977.sp011866

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Lee DV, McGuigan MP, Yoo EH, Biewener AA. Compliance, actuation, and work characteristics of the goat foreleg and hindleg during level, uphill, and downhill running. J Appl Physiol. 2008;104(1):130141. PubMed ID: 17947498 doi:10.1152/japplphysiol.01090.2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Daley MA, Felix G, Biewener AA. Running stability is enhanced by a proximo-distal gradient in joint neuromechanical control. J Exp Biol. 2007;210(3):383394. PubMed ID: 17234607 doi:10.1242/jeb.02668

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Qiao M, Jindrich DL. Leg joint function during walking acceleration and deceleration. J Biomech. 2016;49(1):6672. PubMed ID: 26686397 doi:10.1016/j.jbiomech.2015.11.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Jindrich DL, Qiao M. Maneuvers during legged locomotion. Chaos. 2009;19(2):026105. PubMed ID: 19566265 doi:10.1063/1.3143031

  • 15.

    Moritz CT, Farley CT. Human hoppers compensate for simultaneous changes in surface compression and damping. J Biomech. 2006;39(6):10301038. PubMed ID: 16549093 doi:10.1016/j.jbiomech.2005.02.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Ferris DP, Farley CT. Interaction of leg stiffness and surface stiffness during human hopping. J Appl Physiol. 1997;82(1):1522. PubMed ID: 9029193 doi:10.1152/jappl.1997.82.1.15

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Ferris DP, Liang KL, Farley CT. Runners adjust leg stiffness for their first step on a new running surface. J Biomech. 1999;32(8):787794. PubMed ID: 10433420 doi:10.1016/S0021-9290(99)00078-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Farley CT, Blickhan R, Saito J, Taylor CR. Hopping frequency in humans: a test of how springs set stride frequency in bouncing gaits. J Appl Physiol. 1991;71(6):21272132. PubMed ID: 1778902 doi:10.1152/jappl.1991.71.6.2127

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Farley CT, Glasheen J, McMahon TA. Running springs: speed and animal size. J Exp Biol. 1993;185(1):7186.

  • 20.

    Kuitunen S, Ogiso K, Komi PV. Leg and joint stiffness in human hopping. Scand J Med Sci Sports. 2011;21(6):e159e167. PubMed ID: 22126723 doi:10.1111/j.1600-0838.2010.01202.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Farley CT, Gonzalez O. Leg stiffness and stride frequency in human running. J Biomech. 1996;29(2):181186. PubMed ID: 8849811 doi:10.1016/0021-9290(95)00029-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Lindstedt SL, Mineo PM, Schaeffer PJ. Animal galloping and human hopping: an energetics and biomechanics laboratory exercise. Adv Physiol Educ. 2013;37(4):377383. PubMed ID: 24292916 doi:10.1152/advan.00045.2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Lay AN, Hass CJ, Gregor RJ. The effects of sloped surfaces on locomotion: a kinematic and kinetic analysis. J Biomech. 2006;39(9):16211628. PubMed ID: 15990102 doi:10.1016/j.jbiomech.2005.05.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Farris DJ, Sawicki GS. The mechanics and energetics of human walking and running: a joint level perspective. J R Soc Interface. 2012;9(66):110118. PubMed ID: 21613286 doi:10.1098/rsif.2011.0182

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Farley CT, Taylor CR. A mechanical trigger for the trot-gallop transition in horses. Science. 1991;253(5017):306308. PubMed ID: 1857965 doi:10.1126/science.1857965

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Bramble DM, Lieberman DE. Endurance running and the evolution of Homo. Nature. 2004;432(7015):345352. PubMed ID: 15549097 doi:10.1038/nature03052

  • 27.

    Kizony R, Levin MF, Hughey L, Perez C, Fung J. Cognitive load and dual-task performance during locomotion poststroke: a feasibility study using a functional virtual environment. Phys Ther. 2010;90(2):252260. PubMed ID: 20023003 doi:10.2522/ptj.20090061

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Qiao M, Abbas JJ, Jindrich DL. A model for differential leg joint function during human running. Bioinspir Biomim. 2017;12(1):016015. PubMed ID: 28134133 doi:10.1088/1748-3190/aa50b0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Keppel G, Wickens TD. The single-factor within-subject design: basic calculations. In: Keppel G, Wickens TD, eds. Design and Analysis: A Researcher’s Handbook, 4th ed. Vol 5. Upper Saddle River, NJ: Pearson Prentice Hall; 2004:350368.

    • Search Google Scholar
    • Export Citation
  • 30.

    Chang YH, Roiz RA, Auyang AG. Intralimb compensation strategy depends on the nature of joint perturbation in human hopping. J Biomech. 2008;41(9):18321839. PubMed ID: 18499112 doi:10.1016/j.jbiomech.2008.04.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Qiao M, Brown B, Jindrich DL. Compensations for increased rotational inertias during human cutting turns. J Exp Biol. 2014;217(3):432443. PubMed ID: 24115061 doi:10.1242/jeb.087569

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Qiao M, Jindrich DL. Task-level strategies for human sagittal-plane running maneuvers are consistent with robotic control policies. PLoS One. 2012;7(12):e51888. PubMed ID: 23284804 doi:10.1371/journal.pone.0051888

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Qiao M, Yang F. Leg joint stiffness affects dynamics of backward falling from standing height: a simulation work. J Biomech Eng. 2020;142(10).

  • 34.

    Huston RL, Passerello CE. The mechanics of human body motion. In: Ghista DN, ed. Human Body Dynamics: Impact, Occupation, and Athletic Aspects. Oxford, UK: Clarendon Press; 1982:203247.

    • Search Google Scholar
    • Export Citation
  • 35.

    Day EM, Hahn ME. Dynamic angular stiffness about the metatarsophalangeal joint increases with running speed. Hum Mov Sci. 2019;67:102501. PubMed ID: 31344545 doi:10.1016/j.humov.2019.102501

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Nigg BM, Liu W. The effect of muscle stiffness and damping on simulated impact force peaks during running. J Biomech. 1999;32(8):849856. PubMed ID: 10433427 doi:10.1016/S0021-9290(99)00048-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Diggin D, Anderson R, Harrison AJ. An examination of the true reliability of lower limb stiffness measures during overground hopping. J Appl Biomech. 2016;32(3):278286. PubMed ID: 26745354 doi:10.1123/jab.2015-0210

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Farris DJ, Raiteri BJ. Modulation of leg joint function to produce emulated acceleration during walking and running in humans. R Soc Open Sci. 2017;4(3):160901. PubMed ID: 28405377 doi:10.1098/rsos.160901

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    van der Krogt MM, de Graaf WW, Farley CT, Moritz CT, Casius LJR, Bobbert MF. Robust passive dynamics of the musculoskeletal system compensate for unexpected surface changes during human hopping. J Appl Physiol. 2009;107(3):801808. PubMed ID: 19589956 doi:10.1152/japplphysiol.91189.2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Biewener AA. Muscle function in vivo: a comparison of muscles used for elastic energy savings versus muscles used to generate mechanical power. Am Zool. 1998;38(4):703717. doi:10.1093/icb/38.4.703

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Roberts TJ. The integrated function of muscles and tendons during locomotion. Comp Biochem Physiol A Mol Integr Physiol. 2002;133(4):10871099. doi:10.1016/S1095-6433(02)00244-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Cavagna GA, Thys H, Zamboni A. The sources of external work in level walking and running. J Physiol. 1976;262(3):639657. PubMed ID: 1011078 doi:10.1113/jphysiol.1976.sp011613

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Roberts TJ, Belliveau RA. Sources of mechanical power for uphill running in humans. J Exp Biol. 2005;208(10):19631970. doi:10.1242/jeb.01555

  • 44.

    Prilutsky BI, Zatsiorsky VM. Tendon action of two-joint muscles: transfer of mechanical energy between joints during jumping, landing, and running. J Biomech. 1994;27(1):2534. PubMed ID: 8106533 doi:10.1016/0021-9290(94)90029-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Biewener AA. Muscle-tendon stresses and elastic energy storage during locomotion in the horse. Comp Biochem Phys B. 1998;120(1):7387. doi:10.1016/S0305-0491(98)00024-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    McMahon TA. The spring in the human foot. Nature. 1987;325(7000):108109. PubMed ID: 3808067 doi:10.1038/325108a0

  • 47.

    Sawicki GS, Lewis CL, Ferris DP. It pays to have a spring in your step. Exerc Sport Sci Rev. 2009;37(3):130138. PubMed ID: 19550204 doi:10.1097/JES.0b013e31819c2df6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Riddick R, Farris DJ, Kelly LA. The foot is more than a spring: human foot muscles perform work to adapt to the energetic requirements of locomotion. J R Soc Interface. 2019;16(150):20180680. PubMed ID: 30958152 doi:10.1098/rsif.2018.0680

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Hackert R, Schilling N, Fischer MS. Mechanical self-stabilization, a working hypothesis for the study of the evolution of body proportions in terrestrial mammals? Cr Palevol. 2006;5(3–4):541549. doi:10.1016/j.crpv.2005.10.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Grimmer S, Ernst M, Günther M, Blickhan R. Running on uneven ground: leg adjustment to vertical steps and self-stability. J Exp Biol. 2008;211(18):29893000. PubMed ID: 18775936 doi:10.1242/jeb.014357

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Biewener AA, Daley MA. Unsteady locomotion: integrating muscle function with whole body dynamics and neuromuscular control. J Exp Biol. 2007;210(17):29492960. PubMed ID: 17704070 doi:10.1242/jeb.005801

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2023 465 17
Full Text Views 201 23 3
PDF Downloads 147 7 0