Vertical Ground Reaction Force Estimation From Benchmark Nonstationary Kinematic Data

Click name to view affiliation

Daniel J. Davis The Pennsylvania State University

Search for other papers by Daniel J. Davis in
Current site
Google Scholar
PubMed
Close
*
and
John H. Challis The Pennsylvania State University

Search for other papers by John H. Challis in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Time-differentiating kinematic signals from optical motion capture amplifies the inherent noise content of those signals. Commonly, biomechanists address this problem by applying a Butterworth filter with the same cutoff frequency to all noisy displacement signals prior to differentiation. Nonstationary signals, those with time-varying frequency content, are widespread in biomechanics (eg, those containing an impact) and may necessitate a different filtering approach. A recently introduced signal filtering approach wherein signals are divided into sections based on their energy content and then Butterworth filtered with section-specific cutoff frequencies improved second derivative estimates in a nonstationary kinematic signal. Utilizing this signal-section filtering approach for estimating running vertical ground reaction forces saw more of the signal’s high-frequency content surrounding heel strike maintained without allowing inappropriate amounts of noise contamination in the remainder of the signal. Thus, this signal-section filtering approach resulted in superior estimates of vertical ground reaction forces compared with approaches that either used the same filter cutoff frequency across the entirety of each signal or across the entirety of all signals. Filtering kinematic signals using this signal-section filtering approach is useful in processing data from tasks containing an impact when accurate signal second derivative estimation is of interest.

The authors are with the Biomechanics Laboratory, The Pennsylvania State University, University Park, PA, USA.

Davis (djd426@psu.edu) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Erer KS. Adaptive usage of the Butterworth digital filter. J Biomech. 2007;40(13):29342943. PubMed ID: 17442321 doi:10.1016/j.jbiomech.2007.02.019

  • 2.

    Shin S, Yoo B, Han S. Automatic spline smoothing of non-stationary kinematic signals using bilayered partitioning and blending with correlation analysis. Digit Signal Process. 2015;39:2234. doi:10.1016/j.dsp.2014.12.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Augustus S, Mithat Amca A, Hudson PE, Smith N. Improved accuracy of biomechanical motion data obtained during impacts using a time-frequency low-pass filter. J Biomech. 2020;101:109639. PubMed ID: 31983403 doi:10.1016/j.jbiomech.2020.109639

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Bisseling RW, Hof AL. Handling of impact forces in inverse dynamics. J Biomech. 2006;39(13):24382444. PubMed ID: 16209869 doi:10.1016/j.jbiomech.2005.07.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Kristianslund E, Krosshaug T, van den Bogert AJ. Effect of low pass filtering on joint moments from inverse dynamics: implications for injury prevention. J Biomech. 2012;45(4):666671. PubMed ID: 22227316 doi:10.1016/j.jbiomech.2011.12.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Challis JH. A procedure for the automatic determination of filter cutoff frequency for the processing of biomechanical data. J Appl Biomech. 1999;15(3):303317. doi:10.1123/jab.15.3.303

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Schreven S, Beek PJ, Smeets JBJ. Optimising filtering parameters for a 3D motion analysis system. J Electromyogr Kinesiol. 2015;25(5):808814. PubMed ID: 26159504 doi:10.1016/j.jelekin.2015.06.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Komaris D-S, Perez-Valero E, Jordan L, et al. Effects of segment masses and cut-off frequencies on the estimation of vertical ground reaction forces in running. J Biomech. 2020;99:109552. PubMed ID: 31862113 doi:10.1016/j.jbiomech.2019.109552

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    van den Bogert AJ, de Koning FL. On optimal filtering for inverse dynamics analysis. In: Proceedings of the 9th Biennial Conference of the Canadian Society for Biomechanics. 1996:214215. Vancouver: Simon Fraser University.

    • Search Google Scholar
    • Export Citation
  • 10.

    Giakas G, Baltzopoulos V. Optimal digital filtering requires a different cut-off frequency strategy for the determination of the higher derivatives. J Biomech. 1997;30(8):851855. PubMed ID: 9239572 doi:10.1016/S0021-9290(97)00043-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Edwards WB, Troy KL, Derrick TR. On the filtering of intersegmental loads during running. Gait Posture. 2011;34(3):435438. PubMed ID: 21727008 doi:10.1016/j.gaitpost.2011.06.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Davis DJ, Challis JH. Automatic segment filtering procedure for processing non-stationary signals. J Biomech. 2020;101:109619. PubMed ID: 31952818 doi:10.1016/j.jbiomech.2020.109619

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Smith G. Padding point extrapolation techniques for the Butterworth digital filter. J Biomech. 1989;22(8/9):967971. doi:10.1016/0021-9290(89)90082-1

  • 14.

    Windolf M, Götzen N, Morlock M. Systematic accuracy and precision analysis of video motion capturing systems—exemplified on the Vicon-460 system. J Biomech. 2008;41(12):27762780. PubMed ID: 18672241 doi:10.1016/j.jbiomech.2008.06.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Eichelberger P, Ferraro M, Minder U, et al. Analysis of accuracy in optical motion capture—a protocol for laboratory setup evaluation. J Biomech. 2016;49(10):20852088. PubMed ID: 27230474 doi:10.1016/j.jbiomech.2016.05.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Topley M, Richards JG. A comparison of currently available optoelectronic motion capture systems. J Biomech. 2020;106:109820. PubMed ID: 32517978 doi:10.1016/j.jbiomech.2020.109820

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Kaiser JF. On a simple algorithm to calculate the “energy” of a signal. In: International Conference on Acoustics, Speech, and Signal Processing. Albuquerque, NM: IEEE; 1990:381384.

    • Search Google Scholar
    • Export Citation
  • 18.

    Leys C, Ley C, Klein O, Bernard P, Licata L. Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J Exp Soc Psychol. 2013;49(4):764766. doi:10.1016/j.jesp.2013.03.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Sprague MA, Geers TL. A spectral-element method for modelling cavitation in transient fluid structure interaction. Int J Numer Methods Eng. 2004;60(15):24672499. doi:10.1002/nme.1054

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1355 411 8
Full Text Views 389 36 21
PDF Downloads 212 20 4