Changes in Spatiotemporal Measures and Variability During User-Driven Treadmill, Fixed-Speed Treadmill, and Overground Walking in Young Adults: A Pilot Study

in Journal of Applied Biomechanics
View More View Less
  • 1 Auburn University
  • 2 Virginia Polytechnic Institute and State University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Walking is an integral indicator of human health commonly investigated while walking overground and with the use of a treadmill. Unlike fixed-speed treadmills, overground walking is dependent on the preferred walking speed under the individuals’ control. Thus, user-driven treadmills may have the ability to better simulate the characteristics of overground walking. This pilot study is the first investigation to compare a user-driven treadmill, a fixed-speed treadmill, and overground walking to understand differences in variability and mean spatiotemporal measures across walking environments. Participants walked fastest overground compared to both fixed and user-driven treadmill conditions. However, gait cycle speed variability in the fixed-speed treadmill condition was significantly lower than the user-driven and overground conditions, with no significant differences present between overground and user-driven treadmill walking. The lack of differences in variability between the user-driven treadmill and overground walking may indicate that the user-driven treadmill can better simulate the variability of overground walking, potentially leading to more natural adaptation and motor control patterns of walking.

Holmes and Roper are with the School of Kinesiology, Auburn University, Auburn, AL, USA. Fawcett is with the Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.

Roper (jroper@auburn.edu) is corresponding author.

Supplementary Materials

    • Supplementary Figure S1 (PDF 48 KB)
    • Supplementary Figure S2 (PDF 115 KB)
    • Supplementary Figure S3 (PDF 63 KB)
    • Supplementary Table S1 (PDF 8 KB)
  • 1.

    Dal U, Erdogan T, Resitoglu B, Beydagi H. Determination of preferred walking speed on treadmill may lead to high oxygen cost on treadmill walking. Gait Posture. 2010;31(3):366369. PubMed ID: 20129785 doi:10.1016/j.gaitpost.2010.01.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Dasilva SG, Guidetti L, Buzzachera CF, et al. Psychophysiological responses to self-paced treadmill and overground exercise. Med Sci Sports Exerc. 2011;43(6):11141124. PubMed ID: 21088625 doi:10.1249/mss.0b013e318205874c

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Malatesta D, Canepa M, Menendez Fernandez A. The effect of treadmill and overground walking on preferred walking speed and gait kinematics in healthy, physically active older adults. Eur J Appl Physiol. 2017;117(9):18331843. PubMed ID: 28687953 doi:10.1007/s00421-017-3672-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Dingwell JB, Cusumano JP, Cavanagh PR, Sternad D. Local dynamic stability versus kinematic variability of continuous overground and treadmill walking. J Biomech Eng. 2001;123(1):2732. PubMed ID: 11277298 doi:10.1115/1.1336798

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Stergiou N, Harbourne RT, Cavanaugh JT. Optimal movement variability: a new theoretical perspective for neurologic physical therapy. J Neurol Phys Ther. 2006;30(3):120129. PubMed ID: 17029655 doi:10.1097/01.npt.0000281949.48193.d9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Hollman JH, Watkins MK, Imhoff AC, Braun CE, Akervik KA, Ness DK. A comparison of variability in spatiotemporal gait parameters between treadmill and overground walking conditions. Gait Posture. 2016;43:204209. doi:10.1016/j.gaitpost.2015.09.024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Sloot LH, van der Krogt MM, Harlaar J. Self-paced versus fixed speed treadmill walking. Gait Posture. 2014;39(1):478484. PubMed ID: 24055003 doi:10.1016/j.gaitpost.2013.08.022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Choi JS, Kang DW, Seo JW, Tack GR. Fractal fluctuations in spatiotemporal variables when walking on a self-paced treadmill. J Biomech. 2017;65:154160. PubMed ID: 29096982 doi:10.1016/j.jbiomech.2017.10.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Kim J, Stanley CJ, Curatalo LA, Park HS. A user-driven treadmill control scheme for simulating overground locomotion. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:30613064. doi:10.1109/embc.2012.6346610

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Plotnik M, Azrad T, Bondi M, et al. Self-selected gait speed—over ground versus self-paced treadmill walking, a solution for a paradox. J Neuroeng Rehabil. 2015;12(1):20. PubMed ID: 25881130 doi:10.1186/s12984-015-0002-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Ray NT, Knarr BA, Higginson JS. Walking speed changes in response to novel user-driven treadmill control. J Biomech. 2018;78:143149. PubMed ID: 30078637 doi:10.1016/j.jbiomech.2018.07.035

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Wiens C, Denton W, Schieber MN, et al. Walking speed and spatiotemporal step mean measures are reliable during feedback-controlled treadmill walking; however, spatiotemporal step variability is not reliable. J Biomech. 2019;83:221226. doi:10.1016/j.jbiomech.2018.11.051

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Reisman DS, Wityk R, Silver K, Bastian AJ. Split-belt treadmill adaptation transfers to overground walking in persons poststroke. Neurorehabil Neural Repair. 2009;23(7):735744. PubMed ID: 19307434 doi:10.1177/1545968309332880

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Brinkerhoff SA, Murrah WM, Hutchison Z, Miller M, Roper JA. Words matter: instructions dictate “self-selected” walking speed in young adults [published online ahead of print July 29, 2019]. Gait Posture. PubMed ID: 31395467 doi:10.1016/j.gaitpost.2019.07.379

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Martin PE, Rothstein DE, Larish DD. Effects of age and physical activity status on the speed-aerobic demand relationship of walking. J Appl Physiol. 1992;73(1):200206. PubMed ID: 1506370 doi:10.1152/jappl.1992.73.1.200

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Brach JS, Perera S, Studenski S, Katz M, Hall C, Verghese J. Meaningful change in measures of gait variability in older adults. Gait Posture. 2010;31(2):175179. PubMed ID: 19889543 doi:10.1016/j.gaitpost.2009.10.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Yoon J, Park HS, Damiano DL. A novel walking speed estimation scheme and its application to treadmill control for gait rehabilitation. J Neuroeng Rehabil. 2012;9(1):62. doi:10.1186/1743-0003-9-62

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Pearce ME, Cunningham DA, Donner AP, Rechnitzer PA, Fullerton GM, Howard JH. Energy cost of treadmill and floor walking at self-selected paces. Eur J Appl Physiol Occup Physiol. 1983;52(1):115119. PubMed ID: 6686120 doi:10.1007/bf00429037

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Riley PO, Paolini G, Della Croce U, Paylo KW, Kerrigan DC. A kinematic and kinetic comparison of overground and treadmill walking in healthy subjects. Gait Posture. 2007;26(1):1724. PubMed ID: 16905322 doi:10.1016/j.gaitpost.2006.07.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Hass CJ, Malczak P, Nocera J, et al. Quantitative normative Gait data in a large cohort of ambulatory persons with parkinson’s disease. PLoS One. 2012;7(8):e42337. PubMed ID: 22879945 doi:10.1371/journal.pone.0042337

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Schniepp R, Wuehr M, Schlick C, et al. Increased gait variability is associated with the history of falls in patients with cerebellar ataxia. J Neurol. 2014;261(1):213223. PubMed ID: 24263407 doi:10.1007/s00415-013-7189-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Stergiou N, Moraiti C, Giakas G, Ristanis S, Georgoulis AD. The effect of the walking speed on the stability of the anterior cruciate ligament deficient knee. Clin Biomech. 2004;19(9):957963. doi:10.1016/j.clinbiomech.2004.06.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Fung J, Richards CL, Malouin F, McFadyen BJ, Lamontagne A. A treadmill and motion coupled virtual reality system for gait training post-stroke. Cyberpsychology Behav. 2006;9(2):157162. PubMed ID: 16640470 doi:10.1089/cpb.2006.9.157

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 62 62 47
Full Text Views 23 23 18
PDF Downloads 18 18 14