Errors in Measuring Glenohumeral Arthrokinematics With 2-Dimensional Fluoroscopy

in Journal of Applied Biomechanics
View More View Less
  • 1 Amity University Uttar Pradesh
  • | 2 Indian Spinal Injuries Centre
  • | 3 University of Minnesota
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Two-dimensional fluoroscopic imaging allows measurement of small magnitude humeral head translations that are prone to errors due to optical distortion, out-of-plane imaging, repeated manual identification of landmarks, and magnification. This article presents results from in vivo and in vitro fluoroscopy-based experiments that measure the errors and variability in estimating the humeral head translated position in true scapular plane and axillary views. The errors were expressed as bias and accuracy. The variability with repeated digitization was calculated using the intraclass correlation coefficient (ICC) and the standard error of measurement. Optical distortion caused underestimation of linear distances. The accuracy was 0.11 and 0.43 mm for in vitro and in vivo experiments, respectively, for optical distortion. The intrarater reliability was excellent for both views (ICC = .94 and .93), and interrater reliability was excellent (ICC = .95) for true scapular view but moderate (ICC = .74) for axillary views. The standard error of measurement ranged from 0.27 to 0.58 mm. The accuracy for the humeral head position in 10° out of true scapular plane images ranged from 0.80 to 0.87 mm. The current study quantifies the magnitude of error. The results suggest that suitable measures could be incorporated to minimize errors and variability for the measurement of glenohumeral parameters.

Makhija and Sethi are with the Amity Institute of Physiotherapy, Amity University Uttar Pradesh, Noida, India. Kataria is with the Indian Spinal Injuries Centre–Institute of Rehabilitation Sciences, New Delhi, India. Singh is with the Orthopedics Department, Indian Spinal Injuries Centre, New Delhi, India. Ludewig is with the Division of Physical Therapy, University of Minnesota, Minneapolis, MN, USA. Phadke is with the Research Department, Indian Spinal Injuries Centre, New Delhi, India.

Phadke (biomechanics.research@isiconline.org, vphadke@gmail.com) is corresponding author.

Supplementary Materials

    • Supplementary Material 1 (PDF 129 KB)
    • Supplementary Material 2 (PDF 26 KB)
  • 1.

    Smith RM, Sheehan FT. Cross platform comparison of imaging technologies for measuring musculoskeletal motion. In: Müller B, Wolf SI, Brueggemann G-P, et al. , eds. Handbook of Human Motion. Cham, Switzerland: Springer International Publishing; 2017:122. doi:10.1007/978-3-319-30808-1_194-1

    • Search Google Scholar
    • Export Citation
  • 2.

    Soimu D, Badea C, Pallikarakis N. A novel approach for distortion correction for X-ray image intensifiers. Comput Med Imaging Graph. 2003;27(1):7985. PubMed ID: 12573892 doi:10.1016/S0895-6111(02)00055-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Bey MJ, Zauel R, Brock SK, Tashman S. Validation of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics. J Biomech Eng. 2006;128(4):604609. PubMed ID: 16813452 doi:10.1115/1.2206199

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Lawrence RL, Ellingson AM, Ludewig PM. Validation of single-plane fluoroscopy and 2D/3D shape-matching for quantifying shoulder complex kinematics. Med Eng Phys. 2018;52(3):6975. PubMed ID: 29229406 doi:10.1016/j.medengphy.2017.11.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Royer PJ, Kane EJ, Parks KE, et al. . Fluoroscopic assessment of rotator cuff fatigue on glenohumeral arthrokinematics in shoulder impingement syndrome. J Shoulder Elbow Surg. 2009;18(6):968975. PubMed ID: 19427234 doi:10.1016/j.jse.2009.03.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    San Juan JG, Kosek P, Karduna AR. Humeral head translation after a suprascapular nerve block. J Appl Biomech. 2013;29(4):371379. PubMed ID: 22927503 doi:10.1123/jab.29.4.371

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Teyhen DS, Miller JM, Middag TR, Kane EJ. Rotator cuff fatigue and glenohumeral kinematics in participants without shoulder dysfunction. J Athl Train. 2008;43(4):352358. PubMed ID: 18668167 doi:10.4085/1062-6050-43.4.352

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Zhao KD, Ben-Abraham EI, Magnuson DJ, et al. . Effect of off-axis fluoroscopy imaging on two-dimensional kinematics in the lumbar spine: a dynamic in vitro validation study. J Biomech Eng. 2016;138(5):054502. PubMed ID: 26974192 doi:10.1115/1.4032995

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Banks SA, Hodge WA. Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy. IEEE Trans Biomed Eng. 1996;43(6):638649. PubMed ID: 8987268 doi:10.1109/10.495283

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Wearing SC, Smeathers JE, Yates B, Sullivan PM, Urry SR, Dubois P. Errors in measuring sagittal arch kinematics of the human foot with digital fluoroscopy. Gait Posture. 2005;21(3):326332. PubMed ID: 15760749 doi:10.1016/j.gaitpost.2004.04.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    De Groot JH. The scapulo-humeral rhythm: Effects of 2-D roentgen projection. Clin Biomech. 1999;14(1):6368. PubMed ID: 10619091 doi:10.1016/S0268-0033(98)00027-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Cholewicki J, McGill SM, Wells RP, Vernon H. Method for measuring vertebral kinematics from videofluoroscopy. Clin Biomech. 1991;6(2):7378. PubMed ID: 23915478 doi:10.1016/0268-0033(91)90002-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Baltzopoulos V. A videofluoroscopy method for optical distortion correction and measurement of knee-joint kinematics. Clin Biomech. 1995;10(2):8592. PubMed ID: 11415536 doi:10.1016/0268-0033(95)92044-M

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Breen AC, Teyhen DS, Mellor FE, Breen AC, Wong KWN, Deitz A. Measurement of intervertebral motion using quantitative fluoroscopy: report of an international forum and proposal for use in the assessment of degenerative disc disease in the lumbar spine. Adv Orthop 2012;2012: 802350. PubMed ID: 22666606 doi:10.1155/2012/802350

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Chen SK, Simonian PT, Wickiewicz TL, Otis JC, Warren RF. Radiographic evaluation of glenohumeral kinematics: a muscle fatigue model. J Shoulder Elb Surg. 1999;8(1):4952. PubMed ID: 10077797 doi:10.1016/S1058-2746(99)90055-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Chopp JN, O’Neill JM, Hurley K, Dickerson CR. Superior humeral head migration occurs after a protocol designed to fatigue the rotator cuff: a radiographic analysis. J Shoulder Elbow Surg. 2010;19(8):11371144. PubMed ID: 20598916 doi:10.1016/j.jse.2010.03.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Papilion JA, Shall LM. Fluoroscopic evaluation for subtle shoulder instability. Am J Sports Med. 1992;20(5):548552. PubMed ID: 1443323 doi:10.1177/036354659202000511

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Deutsch A, Altchek DW, Schwartz E, Otis JC, Warren RF. Radiologic measurement of superior displacement of the humeral head in the impingement syndrome. J Shoulder Elbow Surg. 1996;5(3):186193. PubMed ID: 8816337 doi:10.1016/S1058-2746(05)80004-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Henseler JF, de Witte PB, de Groot JH, van Zwet EW, Nelissen RGHH, Nagels J. Cranial translation of the humeral head on radiographs in rotator cuff tear patients: the modified active abduction view. Med Biol Eng Comput. 2014;52(3):233240. PubMed ID: 23543305 doi:10.1007/s11517-013-1057-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Brainerd EL, Baier DB, Gatesy SM, et al. . X-ray reconstruction of moving morphology (XROMM): precision, accuracy and applications in comparative biomechanics research. J Exp Zool A Ecol Genet Physiol. 2010;313(5):262279. PubMed ID: 20095029 doi:10.1002/jez.589

    • Search Google Scholar
    • Export Citation
  • 21.

    Sanders TG, Jersey SL. Conventional radiography of the shoulder. Semin Roentgenol. 2005;40(3):207222. PubMed ID: 16060114 doi:10.1053/j.ro.2005.01.012

  • 22.

    Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671675. PubMed ID: 22930834 doi:10.1038/nmeth.2089

  • 23.

    Morey VM, Singh H, Paladini P, Merolla G, Phadke V, Porcellini G. The Porcellini test: a novel test for accurate diagnosis of posterior labral tears of the shoulder: comparative analysis with the established tests. Musculoskelet Surg. 2016;100(3):199205. PubMed ID: 27591779 doi:10.1007/s12306-016-0422-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Poppen NK, Walker PS. Normal and abnormal motion of the shoulder. J Bone Joint Surg Am. 1976;58(2):195201. PubMed ID: 1254624 doi:10.2106/00004623-197658020-00006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Lee SH, Kim Y, Lee DG, Lee K, Lee GC. Osteokinematic analysis during shoulder abduction using the C-arm. Phys Ther Rehabil Sci. 2017;6(4):208213. doi:10.14474/ptrs.2017.6.4.208

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    San Juan JG, Karduna AR. Measuring humeral head translation using fluoroscopy: a validation study. J Biomech. 2010;43(4):771774. PubMed ID: 19926089 doi:10.1016/j.jbiomech.2009.10.034

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Ludewig PM, Phadke V, Braman JP, Hassett DR, Cieminski CJ, LaPrade RF. Motion of the shoulder complex during multiplanar humeral elevation. J Bone Joint Surg Am. 2009;91(2):378389. PubMed ID: 19181982 doi:10.2106/JBJS.G.01483

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Portney LG, Watkins MP. Foundations of Clinical Research: Applications to Practice. 3rd ed. Philadelphia, PA: F A Davis Company; 2009.

  • 29.

    Shigematsu H, Koizumi M, Yoneda M, Iida J, Oshima T, Tanaka Y. Magnification error in digital radiographs of the cervical spine against magnetic resonance imaging measurements. Asian Spine J. 2013;7(4):267272. PubMed ID: 24353842 doi:10.4184/asj.2013.7.4.267

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Ludewig PM, Cook TM, Shields RK. Comparison of surface sensor and bone-fixed measurement of humeral motion. J Appl Biomech. 2002;18(2):163170. doi:10.1123/jab.18.2.163

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Sharkey NA, Marder RA. The rotator cuff opposes superior translation of the humeral head. Am J Sports Med. 1995;23(3):270275. PubMed ID: 7661251 doi:10.1177/036354659502300303

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 201 201 69
Full Text Views 110 110 65
PDF Downloads 50 50 29